Seagrass Evolution, Ecology and Conservation: A Genetic Perspective

  • Michelle Waycott
  • Gabriele Procaccini
  • Donald H. Les
  • Thorsten B. H. Reusch


The study and characterization of natural systems involves the evaluation of their diversity and the identification and definition of processes and fluxes operating at different temporal and spatial scales. Ecological studies in general are limited by their ability to infer these different scales of process. The use of genetic analysis to provide insight into scales of process in ecology has increased as the basic tools to undertake such studies have improved and become more widely available. A large number of genetic based approaches are available today but most commonly utilized are DNA markers to assess the relationships among individuals at hierarchical levels ranging from fine scale population processes to the phylogenetic relationships of species, genera, and higher taxa.


Seagrass Meadow Zostera Marina Seagrass Species Marine Angiosperm Seagrass Posidonia Oceanica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman JD (1995) Convergence of filiform pollen morphologiesin seagrasses: Functional mechanisms. Evol Ecol 9: 139–153Google Scholar
  2. Ackerman JD (1997) Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). I. Influence of floral morphology on fluid flow. Am J Bot 84: 1099–1109Google Scholar
  3. Agardh CA (1821) Species Algarum rite cognitae cum synonymis differentis specificis et descriptionibus succinctis,vol 1, Gryphiswaldiae, MavritiiGoogle Scholar
  4. Alberte RS, Suba GK, Procaccini G, Zimmerman RC and Fain SR (1994) Assessment of genetic diversity of seagrass population susing DNA fingerprinting: Implications for population stability and management. Proc Nat Acad Sci USA 91: 1049–1053PubMedGoogle Scholar
  5. Alberto F, Correia L, Arnaud-Haond S, Billot C, Duarte CM and Serrão E (2003a) New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. Mol Ecol Notes 3: 253–255Google Scholar
  6. Alberto F, Correia L, Billot C, Duarte CM and Serrão E (2003b)Isolation and characterization of microsatellite markers for the seagrass Cymodocea nodosa. Mol Ecol Notes 3: 397–399Google Scholar
  7. Alberto F, Mata L and Santos R (2001) Genetic homogeneity in the seagrass Cymodocea nodosa at its northern Atlantic limitrevealed through RAPD. Mar Ecol Prog Ser 221: 299–301Google Scholar
  8. Angel R (2002) Genetic diversity in Halodule wrightii using Random Amplified Polymorphic DNA. Aquat Bot 74: 165–174Google Scholar
  9. Araño KG, Ouborg JN and de Ruyter van Steveninck E (2003) Chloroplast DNA phylogeography of Indo-Pacific seagrasses (Abstract). Gulf Mex Sci 21: 126Google Scholar
  10. Arber A (1920)Water Plants: A Study of Aquatic Angiosperms.Cambridge University Press, LondonGoogle Scholar
  11. Ascherson P (1867) Vorarbeiten zu einer Uebersicht der phanerogamen Meergewächse. Linnaea 35: 152–208Google Scholar
  12. Ascherson P and Graebner P (1907) IV. II. Potamogetonaceae Heft 31 Verlag von HR Engelmann (J. Cramer ed.) Das Pflanzenreich. A. Engler, Weinheim/Bergstrasse. pp 184Google Scholar
  13. Astraldi M and Gasparini GP (1994) The seasonal characteristics of the circulation in the Tyrrhenian Sea: Seasonal and interannual variability of the Western Mediterranean Sea. Coast Est Stud 46: 115–134Google Scholar
  14. Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge,Massachusetts, USAGoogle Scholar
  15. Bachmann K (1994) Tansley Review No. 63, Molecular markers in plant ecology. New Phytol 126: 403–418Google Scholar
  16. Bachmann K (2001) Evolution and the genetic analysis of populations:1950–2000. Taxon 50: 7–45Google Scholar
  17. Balfour IB (1879) On the genus Halophila. Trans Proc Bot Soc Edinburough 13: 290–343Google Scholar
  18. Bandeira SO and Nilsson PG (2001) Genetic population structure of the seagrass Thalassodendron ciliatum in sandy and rocky habitats in southern Mozambique. Mar Biol 139: 1007–1012Google Scholar
  19. Bentham G and Hooker J (1883) Genera Plantarum, ad Exemplaria Imprimis Herbariis Kewensibus Servata Definita, p 1258Reeve & Co., Williams & Norgate, LondonGoogle Scholar
  20. Bessey CE (1915) The phylogenetic taxonomy of floweringplants. Ann Mo Botanical Gardens 2: 109–164Google Scholar
  21. Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia41: 1255–1264Google Scholar
  22. Billingham MR, Reusch TBH, Alberto F and Serrao EA (2003) Isasexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Mar Ecol Prog Ser 265: 77–83Google Scholar
  23. Campey ML,Waycott M and Kendrick GA (1999) Re-evaluatingspecies boundaries among members of the Posidonia ostenfeldii species complex (Posidoniaceae)-morphological and geneticvariation. Aquat Bot 66: 41–66Google Scholar
  24. Capiomont A, Sandmeier M, Caye G and Meinesz A (1996)Enzyme polymorphism in Posidonia oceanica, a seagrass endemicto the Mediterranean. Aquat Bot 54: 265–277Google Scholar
  25. Charlesworth D and Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Systematics18: 237–268Google Scholar
  26. Clegg MT (1980) Measuring plant mating systems. Bio Science30: 814–818Google Scholar
  27. Clifford HT (1970) Quantitative studies of inter-relationshipsamongst the Liliatae. Plant Stystematics Evol 1(Suppl): 77–95Google Scholar
  28. Cook CDK (1996) Aquatic Plant Book. SPB Academic Publishing,The Hague, The Netherlands Coyer JA, Diekmann OE, Serrão EA, Procaccini G, Milchakova N, Billingham M, Stam WT and Olsen JL Population genetics of Zostera noltii (dwarf eelgrass) throughout its biogeographicrange. Mar Ecol Prog Ser (submitted)Google Scholar
  29. G and Olsen JL (2004) Characterization of microsatelliteloci in the dwarf eelgrass, Zostera noltii (Zosteraceae) andcross reactivity with Z. japonica. Mol Ecol Notes 4: 497–499Google Scholar
  30. Cox PA (1988) Hydrophilous pollination. Annu Rev Ecol Systematics19: 261–280Google Scholar
  31. Cox PA (1993) Water pollinated plants. Sci Am 269: 68–74Google Scholar
  32. Cox PA and Humphries CJ (1993) Hydrophilous pollination andbreeding system evolution in seagrasses: A phylogenetic approachto the evolutionary ecology of the Cymodoceaceae.Biol J Linnean Soc Lond 113: 217–226Google Scholar
  33. Cox PA, Laushman RH and Ruckelshaus MH (1992) Surface andsubmarine pollination in the seagrass Zostera marina L. Biol J Linnean Soc Lond 109: 281–291Google Scholar
  34. Cronquist AC (1981) An Integrated System of Classification of Flowering Plants. Columbia University Press, New YorkGoogle Scholar
  35. Dahlgren RMT (1980) A revised System of Classification of the Angiosperms. Botanical J Linnean Soc 80: 91–124Google Scholar
  36. Dahlgren RMT (1985) The Families of the Monocotyledons.Springer-Verlag, BerlinGoogle Scholar
  37. Dahlgren R and Rasmussen FN (1983) Monocotledon evolution,characters and phylogenetic estimation. Evol Biol 16: 255–395Google Scholar
  38. Cognetti G and Di Carlo M (2002) Molecular characterization of a variable tandem repeat sequence determined during RAPD analysis among Posidonia oceanica insular and coastlinepopulations. Russ J Genet 38: 684–690Google Scholar
  39. Davis JL, Childers DL and Kuhn DN (1999) Clonal variation in aFlorida Bay Thalassia testudinum meadow: Molecular geneticassessment of population structure. Mar Ecol Prog Ser 186:127–136Google Scholar
  40. de Heij H and Nienhuis PH (1992) Intraspecific variation onisozyme patterns of phenotypically separated populations ofZostera marina L. in the south-western Netherlands. J Exp Mar Biol Ecol 161: 1–14Google Scholar
  41. Delpino F (1870) Ulteriori osservazioni et considerazioni sulla dicogamia nel regno vegetale II. Atti della soc Ital di Scienze Naturali XIIIGoogle Scholar
  42. den Hartog C (1970) The Sea-Grasses of the World. North-Holland Publishing Company, AmsterdamGoogle Scholar
  43. Duarte CM (2001) Seagrasses. Encyclopedia Biodiversity, Acad Press 5: 255–267Google Scholar
  44. Ehrlich, PR and Wilson EO (1991) Biodiversity studies: Science and policy. Science 253: 758–761Google Scholar
  45. Ellstrand NC and Elam DR (1993) Population genetic consequences of small population size: Implications for plant conservation. Annu Rev Ecol Systematics 24: 217–242Google Scholar
  46. Endlicher S (1836–1840) Genera Plantarum Secundum. Beck Univ. Bibliopolam.Google Scholar
  47. Eriksson O and Fröborg H (1996) Windows of opportunity for recruitment in long-lived clonal plants: Experimental studies of seedling establishment in Vaccinium shrubs. Can J Bot 74:1369–1374Google Scholar
  48. Fægri K and van der Pijl L (1979) The Principles of Pollination Ecology. Pergamon Press, OxfordGoogle Scholar
  49. Fain SR, DeTomasko A and Alberte RS (1992) Characterisation of disjunct populations of Zostera marina (eelgrass) from California: Genetic differences resolved by restriction-fragment length polymorphisms. Mar Biol 112: 683–689Google Scholar
  50. Faith DP (1994) Phylogenetic pattern and the quantification of organismal diversity. Philos Trans R Soc 345: 45–58Google Scholar
  51. Fonseca MS, Kenworthy WJ and Thayer GW (1998) Guidelines for the Conservation and Restoration of Seagrasses in the United Staes and Adjacent Waters. NOAA Coastal Ocean Office, Silver Spring, MDGoogle Scholar
  52. Franconi R and Barcaccia G (1995) Investigation of genomic polymorphism in Posidonia oceanica plants collected in different areas of Mediterranean sea using RAPD markers. Rapp Comm Int Mer Medit 34: 29Google Scholar
  53. Frankel OH, Brown AHD and Burdon JJ (1995) The Conservation of Plant Biodiversity. Cambridge University Press, CambridgeGoogle Scholar
  54. Frankel OH and Soule ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  55. Frankham R, Ballou JD and Briscoe DA (2002) Introductionto Conservation Genetics. Cambridge University Press, Cambridge,UKGoogle Scholar
  56. Frederiksen, M., Krause-Jensen, D., Holmer, M., Laursen, JS (2004) Long-term changes in the area distribution of eelgrass (Zostera marina) in Danish coastal waters. Aquat Bot 78:167–181Google Scholar
  57. Freshwater DW, York RA, Kenworthy WJ and Waycott M (in press) Multi-locus genotyping of the threatened seagrass, Halophila johnsonii Eiseman reveals a high level of clonality. Aquat Bot (in press)Google Scholar
  58. Gagnon PS, Vadas RL, Burdick DB and May B (1980) Genetic identity of annual and perennial forms of Zostera marina L. Aquat Bot 8: 157–162Google Scholar
  59. García-Gil MR, Mikkonen M and Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12: 1195–1206PubMedGoogle Scholar
  60. Gibson G (2002) Microarrays in ecology and evolution: A preview. Mol Ecol 11: 17–24PubMedGoogle Scholar
  61. Guha R and Mondal MS (1999) Taxonomy and pollen morphology of the genus Ruppia L. (Ruppiaceae) in India withspecial reference to systematic position. Geophytologist 29:17–23Google Scholar
  62. Hämmerli Aand Reusch T BH (2002) Local adaptation and transplant dominance in genets of the marine clonal plant Zosteramarina. Mar Ecol Prog Ser 242: 111–118Google Scholar
  63. Hämmerli A and Reusch TBH (2003a) Genetic neighbourhood of clone structure in eelgrass meadows quantified by spatial autocorrelation of microsatellites. Heredity 91(5): 448–455Google Scholar
  64. Hämmerli A and Reusch TBH (2003b) Inbreeding depression influences genet size distribution in a marine angiosperm. Mol Ecol 12: 619–629Google Scholar
  65. Hämmerli A and Reusch TBH (2003c) Flexible mating: Experimentally induced sex-ratio shift in a marine clonal plant. J Evol Biol 16: 1096–1105Google Scholar
  66. Handel SN (1985) The intrusion of clonal growth patterns on plant breeding systems. Am Nat 125: 367–384Google Scholar
  67. Harper JL (1977) Population Biology in Plants. Academic Press,LondonGoogle Scholar
  68. Harwell MC and Orth RJ (2002) Long-distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330Google Scholar
  69. Heckathorn SA, Poeller GJ, Coleman JS and Hallberg R (1996) Nitrogen availability alters patterns of accumulation of heat-stress induced proteins in plants. Oecologia 105: 413–418Google Scholar
  70. Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Ann Rev Ecol Systematics 22: 335–355Google Scholar
  71. Holsinger KE, Mason-Gamer RJ and Whitton J (1999) Genes,demes and plant conservation. In: Landweber LF and Dobson AP (eds) Genetics and the Extinction of Species, pp 23–46. Princeton University Press, Princeton, New JerseyGoogle Scholar
  72. Jarne P and Lagoda PJL (1996) Microsatellites, from moleculesto populations and back. Trends Ecol Evol 11: 424–429Google Scholar
  73. Jewett-Smith J, McMillan C, Kenworthy WJ and Bird K (1997)Flowering and genetic banding patterns of Halophila johnsoniiand conspecifics. Aquat Bot 59: 323–331Google Scholar
  74. Jover MA, del Castillo-Agudo L, Garcia-Carrascosa M and Segura J (2003) Random amplified polymorphic DNA assessmentof diversity in western Mediterranean populations of the seagrass Posidonia oceanica. Am J Bot 90: 364–369Google Scholar
  75. Judd WS, Campbell CS, Kellogg EA, Stevens PF and Donoghue MJ (2002) Plant Systematics: A Phylogenetic Approach. Sinauer Associates Inc., Sunderland, MassachusettsGoogle Scholar
  76. Kawasaki Y (1993) Effects of some environmental factors on seed germination and seedling growth of Zostera marina L. In:International Workshop on Seagrass Biology. Itominato, 1993Proceedings, Ocean Research Institute, University of Tokyo, p. 28–35Google Scholar
  77. Kendall, MS, Battista, T, Hillis-Star, Z (2004) Long term expansionof a deep Syringodium filiformemeadow in St Croix, USVirgin Islands: the potential of hurricanes in the dispersal ofseeds. Aquat Bot 78:15–25Google Scholar
  78. Kirsten JH, Dawes CJ and Cochrane BJ (1998) Randomly ampli-fied polymorphism detection (RAPD) reveals high genetic diversity in Thalassia testudinumBanks ex König (Turtlegrass). Aquat Bot 61: 269–287Google Scholar
  79. Krauss SL (1999) Complete exclusion of nonsires in an analysisof paternity in a natural plant population using amplifiedfragment length polymorphism (AFLP). Mol Ecol 8: 217–226Google Scholar
  80. Kuo J and Cambridge ML (1984) A taxonomic study of the Posidonia ostenfeldiicomplex (Posidoniaceae) with description offour new Australian seagrasses. Aquat Bot 20: 267–295Google Scholar
  81. Laushman RH (1993) Population genetics of hydrophilous angiosperms. Aquat Bot 44: 147–158Google Scholar
  82. Les DH (1988) Breeding systems, population structure andevolution in hydrophylous angiosperms. Ann Mo Botanical Garden 75: 819–835Google Scholar
  83. Les DH, Cleland MA and Waycott M (1997) Phylogenetic studies in Alismatidae, II-evolution of marine angiosperms (seagrasses)and hydrophily. Systematic Bot 22: 443–463Google Scholar
  84. Les DH, Garvin DK and Wimpee CF (1993) Phylogenetic studiesin the monocot subclass Alismatidae: Evidence for a reappraisalof the aquatic order Najadales. Mol Phylogenet Evol 2: 304–314PubMedGoogle Scholar
  85. Les DH and Haynes RR (1995) Systematics of subclass Alismatidae:A synthesis of approaches. In: Rudall PJ, Cribb PJ, Cutler DF and Humphries CJ (eds) Monocotyledons: Systematics and Evolution, pp 1–26. Royal Botanic Gardens,KewGoogle Scholar
  86. Les DH, Moody ML, Jacobs SWL and Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Systematic Bot 27: 468–484Google Scholar
  87. Maldonado A (1985) Evolution of the Mediterranean basins and a detailed reconstruction of the Cenozoic paleoceanography. In: Margalef R (ed) Key Environments: Western Mediterranean, pp 17–59. Pergamon Press, OxfordGoogle Scholar
  88. McDermid KJ, Gregoritza MC, Reeves JW and Freshwater DW (2003) Morphological and genetic variation in the endemic seagrass Halophila hawaiiana (Hydrocharitaceae) in the Hawaiian archipelago. Pac Sci 57: 199–209Google Scholar
  89. McMillan C (1981) Morphological variation and isozymes under laboratory conditions in Cymodocea serrulata. Aquat Bot 10:356–370Google Scholar
  90. McMillan C (1982) Isozymes in seagrasses. Aquat Bot 14: 231–243Google Scholar
  91. McMillan C (1991) Isozyme patterning in marine spermatophytes. In: Triest L (ed) Isozymes in Water Plants, pp 193–200.National Botanic Garden of Belgium, MeiseGoogle Scholar
  92. Meehan, AJ and West, RJ (2004) Seedling development and patch formation of he seagrass Posidonia australis in a southeast Australian estuary. Aquat Bot 79:1–14Google Scholar
  93. Mitchell-Olds T (2001) Arabidopsis thalianaand its wild relatives:A model system for ecology and evolution. Trends Ecol Evol 16: 693–700Google Scholar
  94. Moritz C and Faith DP (1998) Comparative phylogeography and the identification of genetically divergent areas for conservation. Mol Ecol 7: 419–429Google Scholar
  95. Mueller UG and Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14: 389–394PubMedGoogle Scholar
  96. Olsen JL, Stam WT, Coyer JA, Reusch TBH, Bostrom C, Calvert E, Christie H, Granger S, La Lumiere R, Milchalkova N, Oudot-Le Secq MP, Procaccini G, Sanjabi B, Serrao E, Veldsink J, Widdicombe S and Wyllie-Echeverria S (2004)North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol Ecol 13:1923–1941PubMedGoogle Scholar
  97. Orsini L, Acunto S, Piazzi L and Procaccini G. (2001) Sexual reproduction and recruitment in Posidonia oceanica (L.) Delile,a genetic diversity study. In: Faranda FM, Guglielmo L and Spezie G (eds) Structures and Processes in the Mediterranean Ecosystem, pp 385–389. Springer-Verlag ItaliaGoogle Scholar
  98. Ouborg NJ, Piquot Y and Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87: 551–568Google Scholar
  99. Pettitt J, Ducker S and Knox B (1981) Submarine pollination.Sci Am 244: 92–100Google Scholar
  100. Plus, M., Deslous-Paoli, J-M., Dagault, F (2003) Seagrass(Zostera marina L.) bed recolonization after anoxia-induced full mortality. Aquat Bot 77:121–134Google Scholar
  101. Procaccini G and Mazzella L (1996) Genetic variability in two Mediterranean seagrasses. In: Kuo J, Phillips R, Walker D and Kirkman H (eds) Seagrass Biology: Proceedings of an International Workshop, Rottnest Island, Western Australia, 25–29January 1996. Faculty of Science, pp 85–92, The University of Western Australia, PerthGoogle Scholar
  102. Procaccini G and Mazzella L (1998) Population genetic structure and gene flow in the seagrass Posidonia oceanicaassessedusing microsatellite analysis. Mar Ecol Prog Ser 169: 133–141Google Scholar
  103. Procaccini G and Waycott M (1998) Microsatellite loci identified in the seagrass Posidonia oceanica (L.) Delile. J Hered 89:562–568Google Scholar
  104. Procaccini G and Piazzi L (2001) Genetic polymorphism and transplantation success in the mediterranean seagrass Posidonia oceanica. Restoration Ecol 9: 332–338Google Scholar
  105. Procaccini G, Alberte RS and Mazzella L (1996) Geneticstructure of the seagrass Posidonia oceanica in the Western Mediterranean-Ecological implications. Mar Ecol Prog Ser140: 153–160Google Scholar
  106. Procaccini G, Acunto S, Fama P and Maltagliati F (1999a)Structural, morphological, and genetic variability in Halophila stipulacea (Hydrocharitaceae) populations in the western Mediterranean. Mar Biol 135: 181–189Google Scholar
  107. Procaccini G, Mazzella L, Alberte RS and Les DH (1999b) Chloroplast tRNA Leu (UAA) intron sequences provide phylogeneticresolution of seagrass relationships. Aquat Bot 62:269–283Google Scholar
  108. Procaccini G, Orsini L and Ruggiero MV (2000) Genetic structure and distribution of microsatellite diversity in Posidonia oceanica. Biol Marna Mediterr 7: 115–119Google Scholar
  109. Procaccini G, Orsini L, Ruggiero MV and Scardi M (2001)Spatial patterns of genetic diversity in Posidonia oceanica,an endemic Mediterranean seagrass. Mol Ecol 10: 1413–1421PubMedGoogle Scholar
  110. Procaccini G, Ruggiero MV and Orsini L (2002) Genetic structure and distribution of microsatellite population genetic diversity in Posidonia oceanica in the entire Mediterranean basin.Bull Mar Sci 71: 1291–1297Google Scholar
  111. Raniello R and Procaccini G(2002) Ancient DNA in the seagrassPosidonia oceanica. Mar Ecol Prog Ser 227: 269–273Google Scholar
  112. Reusch TBH (2000) Pollination in the marine realm: Microsatellitesreveal high outcrossing rates and multiple paternity ineelgrass Zostera marina. Heredity 85: 459–464PubMedGoogle Scholar
  113. Reusch TBH (2001a) Fitness-consequences of geitonogamy in aclonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138Google Scholar
  114. Reusch TBH (2001b) New markers–old questions: Population genetics of seagrasses. Mar Ecol Prog Ser 211: 261–274Google Scholar
  115. Reusch TBH (2002) Microsatellites reveal high population connectivityin eelgrass (Zostera marina) in two contrastingcoastal areas. Limnology Oceanography 47: 78–85Google Scholar
  116. Reusch TBH (2003) Floral neighbourhoods in the sea: How floral density, opportunity for outcrossing and population fragmentationaffect seed set in Zostera marina. J Ecol 91: 610–613Google Scholar
  117. Reusch TBH, Bostrom C, Stam WT and Olsen JL (1999a) Anancient eelgrass clone in the Baltic Sea. Mar Ecol Prog Ser183: 301–304Google Scholar
  118. Reusch TBH, Hukriede W, Stam WT and Olsen JL (1999b) Differentiating between clonal growth and limited gene flow using spatial autocorrelation between microsatellites. Heredity 83:120–126Google Scholar
  119. Reusch TBH, Stam WT and Olsen JL (1999c) Microsatelliteloci in eelgrass Zostera marinareveal marked polymorphismwithin and among populations. Mol Ecol 8: 317–321Google Scholar
  120. Reusch TBH, Stam WT and Olsen JL (1999d) Size and estimatedage of genets in eelgrass, Zostera marina, assessed with microsatellitemarkers. Mar Biol 133: 519–525Google Scholar
  121. Reusch TBH, Stam WT and Olsen JL (2000) A microsatellite based estimation of clonal diversity and population subdivisionin Zostera marina, a marine flowering plant. Mol Ecol 9:127–140PubMedGoogle Scholar
  122. Richard LC (1811) Mémoire sur les Hydrocharidées; c'est-àdire,sur les plantes qui, avec l'Hydrocharis, constituent la famille naturelle de ce nom Mémoires de la Classe des Sciences Mathématiques et Physiques. pp 1–81Google Scholar
  123. Richards AJ (1997) Plant Breeding Systems. Chapman and Hall,LondonGoogle Scholar
  124. Robblee MB, Barber TR Carlson PR Durako MJ Fourqurean JW Muehlstein LK Porter D, Yarbro LA, Zieman RT and Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay. Mar Ecol Prog Ser 71:297–299Google Scholar
  125. Rohrbach P (1871) Beiträge zur Kenntniss einiger Hydrocharideen nebst Bemerkungen über die Bildung phanerogamer Knospen durch Theilung des Vegetationskegels. Abhandlungender Naturforschenden Ges zu Halle 12: 53–114Google Scholar
  126. Ruckelshaus MH(1995) Estimates of outcrossing rates and of inbreedingdepression in a population of the marine angiosperm Zostera marina. Mar Biol 123: 583–593Google Scholar
  127. Ruckelshaus MH (1996) Estimation of genetic neighborhood parameters from pollen and seed dispersal in the marine angiospermZostera marina L. Evolution 50: 856–864Google Scholar
  128. Ruckelshaus MH (1998) Spatial scale of genetic structure and an indirect estimate of gene flow in Eelgrass, Zostera marina. Evolution 52: 330–343Google Scholar
  129. Ruggiero MV and Procaccini G (2004) The rDNA ITS region in the marine angiosperm Halophila stipulacea (Hydrocharitaceae):Intra-genomic variability and putative pseudogenic sequences. J Mol Evol 58: 115–121PubMedGoogle Scholar
  130. Ruggiero MV, Reusch TBH and Procaccini G (2004) Polymorphicmicrosatellite loci for the marine angiospermCymodocea nodosa. Mol Ecol Notes 4: 512–514Google Scholar
  131. Ruggiero MV, Turk R and Procaccini G (2002) Genetic identityand homozygosity in North-Adriatic populations of Posidonia oceanica: An ancient, post-glacial clone? Conservation Genet3: 71–74Google Scholar
  132. Sandmeier M, Caye G and Molenaar H (1999) Seed enzyme polymorphismand autogamy of the seagrass Posidonia oceanicafrom the Western Mediterranean. Botanica Marina 42: 359–366Google Scholar
  133. Sauvageau C (1891) Sur les feuilles de quelques monocotylédones aquatiques. Thèses présentées à la faculté dessciences de Paris pour obtenir le grade de Docteur ès Sciences Naturelles. Série A, No 158, No d'Ordre 720.G., Masson, Paris.Google Scholar
  134. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT and Smith WA (1998) Phylogenetic studies in plants: Problems andprospects. Mol Ecol 7: 465–474Google Scholar
  135. Schenck H (1886/2003) The biology of aquatic plants. Englishtranslation of Die Biologie der Wassergewaechse by D. H. Les, with new introduction and nomenclatural appendix. Koeltz Publishers, KoenigsteinGoogle Scholar
  136. Schlueter MA and Guttman SI (1998) Gene flow and geneticdiversity of turtle grass, Thalassia testudimun, banks ex könig,in the lower Florida Keys. Aquat Bot 61: 147–164Google Scholar
  137. Sculthorpe CD (1967) The Biology of Aquatic Vascular Plants. Edward Arnold Publishers, LondonGoogle Scholar
  138. Setchell WA (1920) Geographical distribution of the marine spermatophytes.Bull Torrey Botanical Club 47: 563–579Google Scholar
  139. Setchell WA (1927) Zostera marina latifolia: Ecad or ecotype?Bull Torrey Botanical Club 54: 1–6Google Scholar
  140. Takhtajan A (1980) Outline of the classification of floweringplants (Magnoliophyta). Botanical Rev 46: 225–359Google Scholar
  141. Tanaka N, Kuo J, Omori Y, Nakaoka M and Aioi K (2003) Phylogeneticrelationships in the genera Zosteraand Heterozostera (Zosteraceae) based on matKsequence data. J Plant Res 116:273–279PubMedGoogle Scholar
  142. Thiede J (1978) A glacial Mediterranean. Nature 276: 680–683Google Scholar
  143. Thorne RF (1992) An updated phylogenetic classification of theflowering plants. Aliso 13: 365–390Google Scholar
  144. Tomlinson PB (1974) Vegetative morphology and meristemdependence—the foundation of productivity in seagrasses. Aquaculture 4: 107–130Google Scholar
  145. Tomlinson PB (1982) Helobiae (Alismatidae). In: Metcalfe CR (ed) Anatomy of the Monocotyledons. Clarendon Press,OxfordGoogle Scholar
  146. Tomlinson PB and Posluszny U (2001) Generic limits in the seagrass family Zosteraceae, Taxon 50: 429–437Google Scholar
  147. Triest L (1991a) Enzyme polymorphism and its relationships to biological features in aquatic plants. In: Triest L (ed) Isozymesin Water Plants, pp 201–241. National Botanic Garden of Belgium, BelgiumGoogle Scholar
  148. Triest L (1991b) Isozymes in Water Plants. National Botanic Garden of Belgium, BelgiumGoogle Scholar
  149. Uchiyama H (1996) An easy method for investigating molecular systematic relationships in the genus Zostera, Zosteraceae. In: Kuo J, Phillips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings of an International Workshop, Rottnest Island, Western Australia. Faculty of Science, pp 79–84. The University of Western Australia, Perth, Western AustraliaGoogle Scholar
  150. Van Katwijk, MM and Wijgergangs, LJM (2004) Effects of locallyvarying exposure, sediment type and low-tidewater coveron Zostera marina recruitment from seed. Aquat Bot 80:1–12Google Scholar
  151. Verduin JJ (1996) In situsubmarine pollination in Amphibolis antarctica (Labill.) Sonder et Ashers. exAschers. and its relationto hydrodynamics. In: Kuo J, Phillips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings an International Workshop, Rottnest Island, Western Australia, 25–29 January 1996. Faculty of Sciences, pp 123–128. The University of Western Australia, PerthGoogle Scholar
  152. Waycott M (1995) Assessment of genetic variation and clonalityin the seagrass Posidonia australisusing RAPD and allozymeanalysis. Mar Ecol Prog Ser 116: 289–295Google Scholar
  153. Waycott M (1998) Genetic variation, its assessment and implicationsto the conservation of seagrasses. Mol Ecol 7: 793–800Google Scholar
  154. Waycott M (2000a) Genetic factors in the conservation of seagrasses.Pac Conservation Biol 5: 269–276Google Scholar
  155. Waycott M (2000b) Mating systems and population genetics of marine angiosperms (seagrasses). In: Wilson KL and Morrison D (eds) Monocots: Systematics and Evolution, pp 277–285. CSIRO Publishing, SydneyGoogle Scholar
  156. Waycott M and Les DH (1996) Anintegrated approach to the evolutionarystudy of seagrasses. In: Kuo J, Phillips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings an International Workshop, Rottnest Island, Western Australia,25–29 January 1996 Faculty of Science, pp 71–78. The University of Western Australia, PerthGoogle Scholar
  157. Waycott M and Sampson JF (1997) The mating system of an hydrophilousangiosperm Posidonia australis (Posidoniaceae). Am J Bot 84: 621–625Google Scholar
  158. Waycott M, Walker DI and James SH (1996) Genetic uniformityin a dioecious seagrass, Amphibolis antarctica. Heredity 76:578–585Google Scholar
  159. Waycott M, James SH and Walker DI (1997) Genetic variationwithin and between populations of Posidonia australis, a hydrophilous,clonal seagrass. Heredity 79: 408–412Google Scholar
  160. Waycott M and Barnes PAG (2001) AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Mar Biol 139: 1021–1028Google Scholar
  161. Waycott M, Freshwater DW, York RA, Calladine A and Kenworthy WJ (2002) Evolutionary trends in the seagrass genusHalophila (Thouars): Insights from molecular phylogeny. Bull Mar Sci 71: 1299–1308Google Scholar
  162. Williams SL (2001) Reduced genetic diversity in eelgrass transplantationsaffects both population growth and individual fitness. Ecol Appl 11: 1472–1488Google Scholar
  163. Williams SL and Davis CA (1996) Population genetic analysesof transplanted eelgrass (Zostera marina) beds reveal reduced genetic diversity in Southern California. Restoration Ecol 4:163–180Google Scholar
  164. Williams SL and Orth RJ (1998) Genetic diversity and structure of natural and transplanted Eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries 21: 118–128Google Scholar
  165. Womersley HBS (1984) The marine benthic flora of southern Australia. Part 1. D. J. Woolman, Adelaide, South AustraliaGoogle Scholar
  166. Zhang D-X and Hewitt GM (2003) Nuclear DNA analyses in geneticstudies of populations: Practice, problems and prospects. Mol Ecol 12: 563–584PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michelle Waycott
    • 1
  • Gabriele Procaccini
    • 2
  • Donald H. Les
    • 3
  • Thorsten B. H. Reusch
    • 4
  1. 1.School of Tropical BiologyJames Cook UniversityAustralia
  2. 2.Stazione Zoologica ‘A. Dohrn’Laboratorio di Ecologia del BenthosItaly
  3. 3.Department of Ecology and Evolutionary BiologyThe University of ConnecticutUSA
  4. 4.Max-Planck-Institut für LimnologiePlönGermany

Personalised recommendations