Normic Laws, Non-Monotonic Reasoning, and the Unity of Science

  • Gerhard Schurz
Part of the Logic, Epistemology, And The Unity Of Science book series (LEUS, volume 1)


Normic laws have the form “if A, then normally B”. This paper attempts to show that if a philosophical analysis of normic laws (Sections 1, 5) is combined with certain developments in nonmonotonic logic (Sections 2, 4), then both the unity and the diversity of scientific disciplines can be seen in a new perspective (Section 8.9). In particular, this perspective may shed new light on various received questions such as the importance of individual case understanding in the humanities (Section 2), theory-protection through addition of auxiliary hypotheses (Section 3), the fundamental role of evolution in the explanation of normic laws and their relation to statistical normality (Section 5), the different nature of ceteris paribus laws (Section 6) and of the underlying system laws (Sections 7, 8) in physical versus non-physical sciences. The resulting picture is one of unity on the background of diversity on the background of unity (Section 9).


Belief Revision Normic Reasoning Default Logic Default Reasoning Statistical Normality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E. W. : 1975, The Logic of Conditionals, Dordrecht, Reidel.Google Scholar
  2. Adams, E.W.: 1986, ‘On the Logic of High Probability’, Journal of Philosophical Logic 15, 255–279.CrossRefGoogle Scholar
  3. Alchourón, C. E., P. Gärdenfors and D. Makinson: 1985, ‘On the Logic of Theory Change’, Journal of Symbolic Logic 50, 510–530.CrossRefGoogle Scholar
  4. Ashby, W. R.: 1961, An Introduction to Cybernetics, London, Chapman & Hall.Google Scholar
  5. Bertalanffy, L. v.: 1979, General System Theory, 6th edn, New York.Google Scholar
  6. Blackmore, S.: 2000, The Meme Machine, Oxford, Oxford Paperbacks.Google Scholar
  7. Boyd, R. and P. J. Richerson: 1985, Culture and the Evolutionary Process, Chicago, University of Chicago Press.Google Scholar
  8. Brewka, G.: 1991, Non-monotonic Reasoning. Logical Foundations of Commonsense, Cambridge University Press.Google Scholar
  9. Canfied, J. and K. Lehrer: 1961, ‘A Note on Prediction and Deduction’, Philosophy of Science 28, 204–208.CrossRefGoogle Scholar
  10. Carnap, R.: 1950, Logical Foundations of Probability, Chicago, University of Chicago Press.Google Scholar
  11. Cartwrigt, N.: 1983, How the Laws of Physics Lie, Oxford, Clarendon Press.CrossRefGoogle Scholar
  12. Cartwright, N.: 1989, Nature’s Capacities and their Measurement, Oxford, Clarendon Press.Google Scholar
  13. Causey, R.: 1977, The Unity of Science, Dordrecht, Reidel.Google Scholar
  14. Churchland, P.: 1981, ‘Eliminative Materialism and Propositional Attitudes’, Journal of Philosophy 78, 67–90.CrossRefGoogle Scholar
  15. Coffa, J. A.: 1968, ‘Deductive Predictions’, Philosophy of Science 35, 279–283.CrossRefGoogle Scholar
  16. Dawkins, Richard: 1989, The Selfish Gene, 2nd edn, Oxford, Oxford University Press.Google Scholar
  17. Delgrande, J. P.: 1988, ‘An Approach to Default Reasoning Based on a First-Order Conditional Logic: Revised Report’, Artificial Intelligence 36, 63–90.CrossRefGoogle Scholar
  18. Dray, William: 1957, Laws and Explanation in History, Oxford, Oxford University Press.Google Scholar
  19. Dubois, D. et al.: 1994, ‘Possibilistic Logic’, in (1994, ed.), 439–513.Google Scholar
  20. Earman, J.: 1986, A Primer on Determinism, Dordrecht, Reidel.Google Scholar
  21. Fodor, J.: 1989, ‘Making Mind Matter More’, Philosophical Topics 17, 59–79.Google Scholar
  22. Fodor, J.: 1991, ‘You Can Fool Some of the People All of the Time’, Mind 100, 19–34.CrossRefGoogle Scholar
  23. Fuhrmann, A. and H. Rott: 1996, Logic, Action and Information, Berlin, de Gruyter.Google Scholar
  24. Gabbay, D.: 1984, ‘Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems’, in K. R. Apt (ed.), Logics and Models for Concurrent Systems, Berlin, Springer, pp. 439–458.Google Scholar
  25. Gabbay, D. M. et al.: 1994, (eds.), Handbook of Logic in Artificial Intelligence, Vol. 3, Nonmonotonic Reasoning and Uncertain Reasoning, Oxford, Clarendon Press.Google Scholar
  26. Gadenne, V.: 1998, ‘Grundprobleme der Prüfung von Theorien’, in M. Albert and W. Meyer (eds.), Theorie, Modell und Erfahrung, Tübingen, Mohr.Google Scholar
  27. Gardiner, P.: 1952, The Nature of Historical Explanation, Oxford, Oxford University Press.Google Scholar
  28. Gärdenfors, P.: 1988, Knowledge in Flux, Cambridge, MA, MIT Press.Google Scholar
  29. Gärdenfors, P.: 1986, ‘Belief Revisions and the Ramsey Test for Conditionals’, Philosophical Review 95, 81–93.CrossRefGoogle Scholar
  30. Gärdenfors, P. and D. Makinson: 1994, ‘Non-monotonic Inference based on Expectation Orderings’, Artificial Intelligence 65, 197–245.CrossRefGoogle Scholar
  31. Goldman, A. I.: 1986, Epistemology and Cognition, Cambridge, MA, Harvard University Press.Google Scholar
  32. Goldszmidt, M. and J. Pearl: 1996, ‘Qualitative Probabilities for Default Reasoning, Belief Revision and Causal Modeling’, Artificial Intelligence 84, 57–112.CrossRefGoogle Scholar
  33. Good, I. J.: 1983, Good Thinking. The Foundations of Probability and Its Applications, Minneapolis, University of Minnesota Press.Google Scholar
  34. Grünbaum, A. and W. Salmon (eds.): 1988, The Limitations of Deductivism, Berkeley, University of California Press.Google Scholar
  35. Haken, H.: 1983, Synergetics, 3rd edn., Berlin, Springer.Google Scholar
  36. Hempel, C. G.: 1965, Aspects of Scientific Explanation and Other Essays, New York, Free Press.Google Scholar
  37. Hempel, C. G.: 1968, ‘Maximal Specifity and Lawlikeness in Probabilistic Explanation’, Philosophy of Science 35, 116–133.CrossRefGoogle Scholar
  38. Hempel, C. G.: 1988, ‘Provisos: A Problem Concerning the Inferential Function of Scientific Theories’, in Grünbaum and Salmon (eds.), pp. 19–36.Google Scholar
  39. Holzkamp, K.: 1968, Wissenschaft als Handlung, Berlin, de Gruyter.Google Scholar
  40. Horgan, T. and J. Tienson: 1996, Connectionism and the Philosophy of Psychology, Cambridge, MA, MIT Press.Google Scholar
  41. Hüttemann, A.: 1998, ‘Laws and Dispositions’, Philosophy of Science 65, 121–135.CrossRefGoogle Scholar
  42. Joseph, G.: 1980, ‘The Many Sciences and the One World’, Journal of Philosophy 77, 773–790.CrossRefGoogle Scholar
  43. Kahneman, D., P. Slovic and A. Tversky: 1982, Judgement Under Uncertainty: Heuristics and Biases, Cambridge, Cambridge University Press.Google Scholar
  44. Kraus, S., D. Lehmann and M. Magidor: 1990, ‘Non-monotonic Reasoning, Preferential Models and Cumulative Logics’, Artificial Intelligence 44, 167–207.CrossRefGoogle Scholar
  45. Kyburg, H. E. Jr.: 1988, ‘The Justification of Deduction in Science’, in Grünbaum and Salmon (eds.), pp. 61–94.Google Scholar
  46. Lakatos, I.: 1970, ‘Falsification and the Methodology of Scientific Research Programmes’, reprinted in Lakatos, I.: 1978, Philosophical Papers, Vol 1, Cambridge, Cambridge University Press.Google Scholar
  47. Laurier, D.: 1996, ‘Function, Normality, and Temporality’, in M. Marion and R. S. Cohen (eds.), Québec Studies in the Philosophy of Science, Dordrecht, Kluwer, pp. 25–52.Google Scholar
  48. Laymon, R.: 1989, ‘Cartwright and the Lying Laws of Physics’, Journal of Philosophy 89, 353–372.CrossRefGoogle Scholar
  49. Lehmann, D. and M. Magidor: 1992, ‘What does a Conditional Knowledge Base Entail?’, Artificial Intelligence 55, 1–60.CrossRefGoogle Scholar
  50. Leitgeb, H.: 2001, ‘Non-monotonic Reasoning by Inhibitions Nets’, Artificial Intelligence 128, 161–201.CrossRefGoogle Scholar
  51. Lewis, D.: 1973, Counterfactuals, Oxford, Basil Blackwell.Google Scholar
  52. Makinson, D.: 1994, ‘General Patterns in Non-monotonic Reasoning’, in Gabbay (ed.), pp. 35–110.Google Scholar
  53. McCarthy, J.: 1986, ‘Application of Circumscription to Formalizing Common-Sense Knowledge’, Artificial Intelligence 13, 89–116.CrossRefGoogle Scholar
  54. McDermott, D. and J. Doyle: 1980, ‘Non-Monotonic Logic I’, Artificial Intelligence 25, 41–72.CrossRefGoogle Scholar
  55. Millikan, R. G.: 1984, Language, Thought, and Other Biological Categories, Cambridge, MA, MIT Press.Google Scholar
  56. Millikan, R. G.: 1989, ‘Biosemantics’, Journal of Philosophy 86, 281–297.CrossRefGoogle Scholar
  57. Moore, R. C.: 1985, ‘Semantical Considerations on Non-monotonic Logic’, Artificial Intelligence 25, 75–94.CrossRefGoogle Scholar
  58. Neander, K.: 1991, ‘Functions as Selected Effects: The Conceptual Analyst's Defense’, Philosophy of Science 58, 168–184.CrossRefGoogle Scholar
  59. Nilsson, N. J.: 1993, ‘Probabilistic Logic Revisited’, Artificial Intelligence 59, 39–42.CrossRefGoogle Scholar
  60. Nute. D.: 1994, ‘Defeasible Logic’, in Gabbay (ed.), pp. 353–395.Google Scholar
  61. Oppenheim, P. and H. Putnam: 1958, ‘Unity of Science as a Working Hypothesis’, in H. Feigl et al. (eds.), Minnesota Studies in the Philosophy of Science, Vol. II, Mineapolis, University of Minnesota Press, pp. 3–36.Google Scholar
  62. Pearl, J.: 1988, Probabilistic Reasoning in Intelligent Systems, Santa Mateo, CA, Morgan Kaufmann.Google Scholar
  63. Pearl, J.: 1990, ‘System Z’, Proceedings of Theoretical Aspects of Reasoning about Knowledge, Santa Mateo, CA, pp. 21–135.Google Scholar
  64. Pelletier, F. J. and R. Elio: 1997, ‘What Should Default Reasoning Be, By Default?’, Computational Intelligence 13(2), 165–187.CrossRefGoogle Scholar
  65. Pietroski, P. and G. Rey: 1995, ‘When Other Things Aren’t Equal: Saving Ceteris Paribus Laws from Vacuity’, British Journal for the Philosophy of Science 46, 81–110.CrossRefGoogle Scholar
  66. Pollock, J.: 1974, Knowledge and Justification, Princeton, Princeton University Press,Google Scholar
  67. Poole, D.: 1988, ‘A Logical Framework for Default Reasoning’, Artificial Intelligence 36, 27–47.CrossRefGoogle Scholar
  68. Poole, D.: 1994, ‘Default Logic’, in Gabbay (ed.), pp. 189–215.Google Scholar
  69. Rapaport, A.: 1986, General System Theory, Cambridge, MA, Abacus Press.Google Scholar
  70. Reiter, R.: 1980, ‘A Logic for Default Reasoning’, Artificial Intelligence 13, 81–132.CrossRefGoogle Scholar
  71. Reiter, R.: 1987, ‘Non-monotonic Reasoning’, Annual Review of Computer Science, Vol. 2, Palo Alto, California, pp. 147–186.Google Scholar
  72. Rescher, N.: 1976, Plausible Reasoning, Amsterdam, Van Gorcum.Google Scholar
  73. Rescher, N.: 1994, Philosophical Standardism, University of Pittsburgh Press.Google Scholar
  74. Ridley, M.: 1993, Evolution, Oxford, Blackwell Scientific Publications.Google Scholar
  75. Rott, H.: 1997, ‘Drawing Inferences from Conditionals’, in E. Ejerhed and S. Lindström (eds.), Logic, Action and Cognition, Dordrecht, Kluwer, pp. 149–179.Google Scholar
  76. Schiffer, S.: 1991, ‘Ceteris Paribus Laws’, Mind 100, 1–17.CrossRefGoogle Scholar
  77. Schurz, G.: 1994, ‘Probabilistic Justification of Default Reasoning’, in B. Nebel and L. Dreschler-Fischer (eds.), KI-94: Advances of Artificial Intelligence, Berlin, Springer, pp. 248–259.Google Scholar
  78. Schurz, G.: 1995a, ‘Theories and their Applications–A Case of Non-monotonic Reasoning’, in W. Herfel et al. (eds.), Theories and Models in Scientific Processes, Amsterdam, Rodopi, pp. 69–293.Google Scholar
  79. Schurz, G.: 1995b, ‘Scientific Explanation: A Critical Survey’, Foundation of Science I/3, 29–465.Google Scholar
  80. Schurz, G.: 1997a, ‘Probabilistic Default Reasoning Based on Relevance- and Irrelevance Assumptions’, in D. Gabbay et al. (eds.), Qualitative and Quantitative Practical Reasoning (LNAI 1244), Berlin, Springer, pp. 536–553.CrossRefGoogle Scholar
  81. Schurz, G.: 1997b, The Is-Ought Problem. An Investigation in Philosophical Logic, (Studia Logica Library Vol. 1), Dordrecht, Kluwer.Google Scholar
  82. Schurz, G.: 1998, ‘Probabilistic Semantics for Delgrande's Conditional Logic and a Counter-example to his Default Logic’, Artificial Intelligence 102, 81–95.CrossRefGoogle Scholar
  83. Schurz, G.: 2001a, ‘Pietroski and Rey on Ceteris Paribus Laws’, British Journal for the Philosophy of Science 52, 359–370.CrossRefGoogle Scholar
  84. Schurz, G.: 2001b, ‘What is ‘Normal’? An Evolution-Theoretic Foundation of Normic Laws and their Relation to Statistical Normality’, to appear in Philosophy of Science.Google Scholar
  85. Schurz, G.: 2001c, ‘Carnap’s Modal Logic’, in W. Stelzner and M. Stöckler (eds.), Nichtklassische logische Ansätze im übergang von traditioneller zu moderner Logik, Paderborn, Mentis Verlag.Google Scholar
  86. Schurz, G.: 2002, ‘Ceteris Paribus Laws: Classification and Deconstruction’, in J. Earman et al. (eds.), Ceteris Paribus Laws, (special volume) Erkenntnis 57(3), 351–372Google Scholar
  87. Schurz, G. and E. Adams: 2004, ‘Measure-Entailment and Support in the Logic of Approximate Generalizations’, to appear in E. Adams (ed.), Approximate Generalizations, Stanford, CSLI Press.Google Scholar
  88. Schurz, Josef (1990), ‘Prometheus or Expert-Idiot? Changes in Our Understanding Sciences’, Polymer News 15, 232–237.Google Scholar
  89. Shoham, Y.: 1988, Reasoning about Chance, Cambridge, MIT Press.Google Scholar
  90. Scriven, M.: 1959, ‘Truisms as Grounds for Historical Explanations’, in P. Gardiner (ed.), Theories of History, New York, The Free Press.Google Scholar
  91. Silverberg, A.: 1996, ‘Psychological Laws and Non-monotonic Reasoning’, Erkenntnis 44, 199–224.CrossRefGoogle Scholar
  92. Tan, Y.-H.: 1997, ‘Is Default Logic a Reinvention of Inductive-Statistical Reasoning’, Synthese 110/3, 357–379.CrossRefGoogle Scholar
  93. Toulmin, S.: 1958, The Uses of Argument, Cambridge, Cambridge University Press.Google Scholar
  94. Wachbroit, R.: 1994, ‘Normality as a Biological Concept’, Philosophy of Science 61, 579–591.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gerhard Schurz
    • 1
  1. 1.Chair of Theoretical Philosophy, Department of PhilosophyUniversity of Dusseldorf Universitaetsstrasse 1, Geb.23.21DuesseldorfGermany

Personalised recommendations