Metastability and Ageing in Stochastic Dynamics

  • Anton Bovier
Conference paper
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 10)


In these notes I review recent results on metastability and ageing in stochastic dynamics. The first part reviews a somewhat novel approach to the computation of key quantities such as mean exit times in metastable systems and small eigenvalues of the generator of metastable Markov chain developed over the last years with M. Eckhoff, V. Gayrard and M. Klein. This approach is based on extensive use of potential theoretic ideas and allows, at least in the case of reversible dynamics, to get very accurate results with comparatively little effort. This methods have also been used in recent joint work with G. Ben Arous and V. Gayrard on the dynamics of the random energy model. The second part of these lectures is devoted to a review of this work.


Markov Chain Dirichlet Form Stochastic Dynamics Exit Time Poisson Point Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben Arous, G., Bovier, A. and Gayrard, V. (2002) Aging in the Random Energy Model, Phys. Rev. Letts., Vol. 88, pp. 087201.CrossRefGoogle Scholar
  2. 2.
    Ben Arous, G., Bovier, A. and Gayrard, V. (2003) Glauber Dynamics of the Random Energy Model. 1. Metastable Motion on the Extreme States, Commun. Math. Phys., Vol. 235, pp. 379–425.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ben Arous, G., Bovier, A. and Gayrard, V. (2003) Glauber Dynamics of the Random Energy Model. 2. Aging below the Critical Temperature, Commun. Math. Phys., Vol. 236, pp. 1–54.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4..
    Ben Arous, G., Bovier, A. and Gayrard, V. Random Walks on the Hypercube, in preparation.Google Scholar
  5. 5.
    Ben Arous, G. (2002) Aging and Spin Glasses, in Proceedings of the International Congress of Mathematicians 2002, Beijing, China, (Li, Ta, Tsien et al. Eds.), China: Higher Education Press, Vol.3, pp. 3–14.Google Scholar
  6. 6.
    Bouchaud, J.P., Cugliandolo, L., Kurchan, J., Mézard, M. (1998) Out-of-Equilibrium Dynamics in Spin-Glasses and other Glassy Systems, in Spin-Glasses and Random Fields (A.P. Young, Ed.), World Scientific, Singapore.Google Scholar
  7. 7.
    Bouchaud, J.P. and Dean, D. (1995) Aging on Parisi’s Tree, J. Phys, I, France, Vol. 5, pp. 265.CrossRefGoogle Scholar
  8. 8.
    Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2001) Metastability in Stochastic Dynamics of Disordered Mean-Field Models, Probab. Theor. Rel. Fields, Vol. 119, pp. 99–161.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2002) Metastability and Low-Lying Spectra in Reversible Markov Chains, Commun. Math. Phys., Vol. 228, pp. 219–255.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2002) Metastability in Reversible Diffusion Processes I. Sharp Asymptotics for Capacities and Exit Times, Preprint.Google Scholar
  11. 11.
    Bovier, A., Gayrard, V. and Klein, M. (2002) Metastability in Reversible Diffusion Processes II. Precise Asymptotics for Small Eigenvalues, Preprint.Google Scholar
  12. 12.
    Bovier, A. and Manzo, F. (2002) Metastability in Glauber Dynamics in the Low-Temperature Limit: beyond Exponential Asymptotics, J. Statist. Phys., Vol. 107, pp. 757–779.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Burke, C.J. and Rosenblatt, M. (1958) A Markovian Function of a Markov Chain, Ann. Math. Statist, Vol. 29, pp. 1112–1122.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cassandro, M., Galves, A. and Picco, P. (1991) Dynamical Phase Transitions in Disordered Systems: the Study of a Random Walk Model, Ann. Inst. H. Poincare Phys. Thor., Vol.55, pp. 689–705.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cugliandolo, L. (2002) Dynamics of Glassy Systems, Les Houches Lecture Notes, cond-mat/0210312.Google Scholar
  16. 16.
    Cugliandolo, L. and Kurchan, J. (1999) Thermal Properties of Slow Dynamics, Physica, Vol. A 263, pp. 242–253.Google Scholar
  17. 17.
    Davies, E.B. (1982) Metastable States of Symmetric Markov Semigroups. I. Proc. Loud. Math. Soc. Ill, Ser., Vol. 45, pp. 133–150.zbMATHCrossRefGoogle Scholar
  18. 18.
    Davies, E.B. (1982) Metastable States of Symmetric Markov Semigroups. II. J. Lond. Math. Soc. II, Ser., Vol. 26, pp. 541–556.zbMATHCrossRefGoogle Scholar
  19. 19.
    Davies, E.B. (1983) Spectral Properties of Metastable Markov Semigroups, J. Fund. Anal, Vol. 52, pp. 315–329.zbMATHCrossRefGoogle Scholar
  20. 20.
    den Hollander, W.T.F. and Shuler, K.E. (1992) Random Walks in a Random Field of Decaying Traps, J. Statist Phys., Vol.67, pp. 13–31.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Derrida, B. (1980) Random Energy Model: Limit of a Family of Disordered Models, Phys. Rev. Letts., Vol. 45, pp. 79–82.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Derrida, B. (1981) Random Energy Model: An Exactly Solvable Model of Disordered Systems, Phys. Rev. B, Vol. 24, pp. 2613–2626.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Diaconis, P. (1988) Applications of Noncommutative Fourier Analysis to Probability Problems, Ecole d’Ete de Probability de Saint-Flour XV-XVII, 1985–87, Lecture Notes in Math., Vol.1362, Springer Verlag, Berlin, pp. 51–100.Google Scholar
  24. 24.
    Doob, J.L. (1984) Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften Vol.262, Springer Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  25. 25.
    Doyle, P.G. and Snell, J.L. (1984) Random Walks and Electrical Networks, Carus Mathematical Monographs, Vol.22, Mathematical Association of America, Washington, DC.Google Scholar
  26. 26.
    Donsker, M.D. and Varadhan, S.R.S. (1976) On the Principal Eigenvalue of Second-Order Elliptic Differential Operators, Comm. Pure Appl. Math., Vol.29, pp. 595–621.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Eisele, Th. (1983) On a Third Order Phase Transition, Commun. Math. Phys., Vol. 90, pp. 125–159.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Eyring, H. (1935) The Activated Complex in Chemical Reactions, J. Chem. Phys., Vol.3, pp. 107–115.CrossRefGoogle Scholar
  29. 29.
    Eyring, H. and Polanyi, M. (1931) Z. Physik. Chemie., Vol.B12, pp. 279.Google Scholar
  30. 30.
    Fontes, L.R.G., Isopi, M., Kohayakawa, Y. and Picco, P. (2001) The Spectral Gap of the REM under Metropolis Dynamics, Ann. Appl. Probab., Vol. 8, pp. 917–943.MathSciNetGoogle Scholar
  31. 31.
    Preidlin, M.L and Wentzell, A.D. (1984) Random Perturbations of Dynamical Systems, Springer Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  32. 32.
    Galvez, A., Martinez, S. and Picco, P. (1989) Fluctuations in Derrida’s Random Energy and Generalized Random Enery Models, J. Stat. Phys., Vol. 54, pp. 515–529.CrossRefGoogle Scholar
  33. 33.
    Gaveau, B. and Schulman, L.S. (1998) Theory of Nonequilibrium First-Order Phase Transitions for Stochastic Dynamics, J. Math. Phys., Vol. 39, pp. 1517–1533.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Gayrard, V. (1992) Thermodynamic Limit of the g-State Potts-Hopfield Model with Infinitely many Patterns, J. Statist. Phys., Vol. 68, pp. 977–1011.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Glasstone, S., Laidler, K.J. and Eyring, H. (1941) The Theory of Rate Processes, McGraw-Hill, New York.Google Scholar
  36. 36.
    Holley, R.A., Kusuoka, S., and Stroock, S.W. (1989) Asymptotics of the Spectral Gap with Applications to the Theory of Simulated Annealing, J. Fund. Anal., Vol. 83, pp. 333–347.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Huisinga, W., Meyn, S. and Schiitte, Ch. (2002) Phase Transitions and Metastability for Markovian and Molecular Systems, FU Berlin, Preprint.Google Scholar
  38. 38.
    Kato, T. (1976) Perturbation Theory for Linear Operators, Second edition, Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York.zbMATHCrossRefGoogle Scholar
  39. 39.
    Kakutani, S. (1941) Markov Processes and the Dirichlet Problem, Proc. Jap. Acad. Vol.21, pp. 227–233.MathSciNetGoogle Scholar
  40. 40.
    Kemeny, J.G. and Snell, J.L. (1960) Finite Markov Chains, D. van Nostrand Company, Princeton.zbMATHGoogle Scholar
  41. 41.
    Kemperman, J.H.B. (1961) The Passage Problem for a Stationary Markov Chain, Statistical Research Monographs, Vol.I, The University of Chicago Press.Google Scholar
  42. 42.
    Kolokoltsov, V.N. (2000) Semiclassical Analysis for Diffusions and Stochastic Processes, Springer Verlag, Berlin.zbMATHGoogle Scholar
  43. 43.
    Kolokoltsov, V.N. and Makarov, K.A. (1996) Asymptotic Spectral Analysis of a Small Diffusion Operator and the Life Times of the Corresponding Diffusion Process, Russian J. Math. Phys., Vol.4, pp. 341–360.MathSciNetGoogle Scholar
  44. 44.
    Koch, H. and Piasko, J. (1989) Some Rigorous Results on the Hopfield Neural Network Model, J. Statist Phys., Vol.55, pp. 903–928.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kramers, H.A. (1940) Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions, Physica, Vol.7, pp. 284–304.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Mathieu, P. (1995) Spectra, Exit Times and Long Times Asymptotics in the Zero White Noise Limit, Stock Rep., Vol. 55, pp. 1–20.MathSciNetzbMATHGoogle Scholar
  47. 47.
    Mathieu, P. and Picco, P. (2000) Convergence to Equilibrium for Finite Markov Processes with Application to the Random Energy Model, CPT-2000/P.39, Preprint.Google Scholar
  48. 48.
    Matthews, P. (1987) Mixing Rates for a Random Walk on the Cube, SIAM J. Algebraic Discrete Methods, Vol. 8, pp. 746–752.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Miclo, L. (1995) Comportement de Spectres d’Operateurs de Schrodinger a Basse Temperature, Bull Set. Math., Vol.119, pp. 529–553.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Matkowsky, B.J. and Schuss, Z. (1979) The Exit Problem: a New Approach to Diffusion Across Potential Barriers, SIAM J. Appl. Math., Vol. 36, pp. 604–623.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Maier, R.S. and Stein, D.L. (1997) Limiting Exit Location Distributions in the Stochastic Exit Problem, SIAM J. Appl Math., Vol.57, pp. 752–790.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Olivieri, E. and Picco, P. (1991) On the Existence of Thermodynamics for the Random Energy Model, Commun. Math. Phys., Vol. 96, pp. 125–144.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London.zbMATHGoogle Scholar
  54. 54.
    Ruelle, D. (1987) A Mathematical Reformulation of Derrida’s REM and GREM, Commun. Math. Phys., Vol. 108, pp. 225–239.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Saloff-Coste, L. (1997) Lectures on Finite Markov Chains, Lectures on Probability Theory and Statistics, Saint-Flour, 1996, Lecture Notes in Math., Springer Verlag, Berlin, Vol.1665, pp. 301–413.Google Scholar
  56. 56.
    Scoppola, E. (1995) Renormalization and Graph Methods for Markov Chains, Advances in Dynamical Systems and Quantum Physics, Capri, 1993, World Sci. Publishing, River Edge, NJ, pp. 260–281.Google Scholar
  57. 57.
    Sznitman, A.-S. (1998) Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  58. 58.
    Soardi, P.M. (1994) Potential Theory on Infinite Networks, LNM 1590, Springer Verlag, Berlin.Google Scholar
  59. 59.
    Talkner, P. (1987) Mean First Passage Times and the Lifetime of a Metastable State, Z. Phys., Vol.B 68, pp. 201–207.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Wentzell, A.D. (1972) On the Asymptotic Behaviour of the Greatest Eigenvalue of a Second Order Elliptic Differential Operator with a Small Parameter in the Higher Derivatives, Soviet Math. Doci, Vol. 13, pp. 13–17.Google Scholar
  61. 61.
    Wentzell, A.D. (1973) Formulas for Eigenfunctions and Eigenmeasures that are Connected with a Markov Process, Teor. Verojatnost. i Primenen., Vol.18, pp. 329.Google Scholar
  62. 62.
    Wigner, E.P. (1938) Trans. Faraday Soc. Vol.34, pp. 29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Anton Bovier
    • 1
  1. 1.Weierstrass-Institut für Angewandte Analysis und StochastikBerlinGermany

Personalised recommendations