Advertisement

Mobility and Reactivity of the Surface and Lattice Oxygen of Some Complex Oxides with Perovskite Structure

  • V. A. Sadykov
  • N. N. Bulgakov
  • V. S. Muzykantov
  • T. G. Kuznetsova
  • G. M. Alikina
  • A. I. Lukashevich
  • Yu. V. Potapova
  • V. A. Rogov
  • E. B. Burgina
  • V. I. Zaikovskii
  • E. M. Moroz
  • G. S. Litvak
  • I. S. Yakovleva
  • L. A. Isupova
  • V. V. Zyryanov
  • E. Kemnitz
  • S. Neophytides
Part of the Nato Science Series book series (NAII, volume 173)

Abstract

Mobility and reactivity of the surface and bulk oxygen of perovskite-like mixed oxides including lanthanum manganite (I) and ferrite (II) systems modified by Ca (I,II) and fluorine (I), as well as some Co, Fe-containing complex perovskites were considered. Combination of thermal analysis data, oxygen isotope exchange, O2 TPD, reduction by CO, H2 and CH4 TPR, were applied to characterize the accessible surface/bulk oxygen mobility and reactivity. Comparison of these results with earlier data on the real (defect) structure of these systems by TEM, EXAFS, XRD, FTIRS, SIMS allowed to elucidate factors determining the oxygen mobility and reactivity. A quantitative description of the experimental energetic spectrum of oxygen bound with regular and defect surface sites of perovskites was obtained by using the semiempirical Interacting Bonds method with a due regard for the surface face termination and relaxation. Pronounced effect of cation vacancies on the activation barrier for the oxygen migration in the perovskite lattice has been revealed.

Key words

perovskites oxygen bonding strength mobility and reactivity isotope exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Tejuca, J. L. G. Fierro, J.M.D. Tascon, Adv. Catal. 36, 237 (1989).CrossRefGoogle Scholar
  2. 2.
    H. Arai, M. Machida, Catal. Today, 35, 27 (1997).CrossRefGoogle Scholar
  3. 3.
    H. Tamaitsu, K. Wada, H. Kaneko, H. Yamamura, J. Am. Ceram. Soc., 75, 401 (1992).CrossRefGoogle Scholar
  4. 4.
    U. Balachandran et al, Am. Ceram. Soc. Bull., 74, 71 (1995).Google Scholar
  5. 5.
    A. A. Galkin, G. N. Mazo, V. V. Lunin, S. Scheurell, E. Kemnitz, Zh. Phys. Khim., 72, 1618 (1998).Google Scholar
  6. 6.
    V. V. Zyryanov Inventors Certificate No 1403439, 1988, (USSR).Google Scholar
  7. 7.
    M. P. Pechini, U.S. Patent 3 330 697 (1967).Google Scholar
  8. 8.
    V. A. Sadykov et al, Mat. Res. Soc. Symp. Proc., 751, Z3.27 (2003).Google Scholar
  9. 9.
    L. A. Isupova et al, Kinetika I Kataliz, 41, 315 (2000).Google Scholar
  10. 10.
    V. V. Zyryanov et al, Mat. Res. Soc. Symp. Proc., 754, DD 2.10 (2003).Google Scholar
  11. 11.
    L. A. Isupova et al, Chem. in Sustain. Development, 10, 77 (2002).Google Scholar
  12. 12.
    L. A. Isupova et al, Catal. Today, 75, 305 (2002).CrossRefGoogle Scholar
  13. 13.
    H. X. Dai, C. F. Ng, C.T. Au, J. Catal. 193, 65 (2000).CrossRefGoogle Scholar
  14. 14.
    V. A. Sadykov, T. G. Kuznetsova, S. A. Veniaminov, V. V. Lunin, E. Kemnitz, A. Aboukais, React. Kinet. Catal. Lett. 76, 83 (2002).CrossRefGoogle Scholar
  15. 15.
    V. A. Razdobarov, V. A. Sadykov et al, React. Kinet. Catal. Lett., 37, 109 (1988).CrossRefGoogle Scholar
  16. 16.
    N. N. Bulgakov, V. A. Sadykov, V. V. Lunin, E. Kemnitz, React. Kinet. Catal. Lett., 76, 111 (2002).CrossRefGoogle Scholar
  17. 17.
    L. Lisi, G. Bagnasco, P. Ciambelli, S. De Rossi, P. Porta, G. Russo, M. Turco, J. Solid State Chem., 146, 176 (1999).CrossRefGoogle Scholar
  18. 18.
    A. M. van Roosmalen, E. H. P. Gordfunke, J. Solid State Chem. 110, 113 (1994).CrossRefGoogle Scholar
  19. 19.
    V. S. Muzykantov, React. Kinet. Catal. Lett. 35, 437 (1987).CrossRefGoogle Scholar
  20. 20.
    V. S. Muzykantov. Trudy MKHTI im. Mendeleeva, issue 147 “Isotopes in Catalysis”, M., 1987, p. 5.Google Scholar
  21. 21.
    V. S. Muzykantov, V. N. Zudin, V. A. Rogov, A. A. Shestov, V. A. Likholobov, Kinetika I Kataliz, 38, 581 (1997).Google Scholar
  22. 22.
    V. S. Muzykantov, V. V. Popovskii, G. K. Boreskov, Kinetika I Kataliz, 5, 624 (1964).Google Scholar
  23. 23.
    V. S. Muzykantov, E. Kemnitz, V. A. Sadykov, V. V. Lunin, Kinetika i Kataliz, (2003) in pressGoogle Scholar
  24. 24.
    V. V. Kharton et al., J. Electrochem. Soc., 147, 2814 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Ya. Rozovskii, Catalyst and Reaction Media, Nauka, Moscow, 1988.Google Scholar
  26. 26.
    Belzner et al, Solid State Ionics, 57, 327 (1992).CrossRefGoogle Scholar
  27. 27.
    M. S. Islam, M. Cherry, and C. R. A. Catlow, J. Solid State Chem., 124, 230 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • V. A. Sadykov
    • 1
  • N. N. Bulgakov
    • 1
  • V. S. Muzykantov
    • 1
  • T. G. Kuznetsova
    • 1
  • G. M. Alikina
    • 1
  • A. I. Lukashevich
    • 1
  • Yu. V. Potapova
    • 1
  • V. A. Rogov
    • 1
  • E. B. Burgina
    • 1
  • V. I. Zaikovskii
    • 1
  • E. M. Moroz
    • 1
  • G. S. Litvak
    • 1
  • I. S. Yakovleva
    • 1
  • L. A. Isupova
    • 1
  • V. V. Zyryanov
    • 2
  • E. Kemnitz
    • 3
  • S. Neophytides
    • 4
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Inst. of Solid State Chemistry SB RASNovosibirskRussia
  3. 3.Inst. for ChemistryHumboldt- UniversityBerlinGermany
  4. 4.Inst. Chem. Eng. & High Temperature Proc.PatrasGreece

Personalised recommendations