Advertisement

Mesopore Analysis

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)

Abstract

As discussed in chapter 4, the state and thermodynamic stability of pure fluids in mesopores depends on the interplay between the strength of fluid-wall and fluid-fluid interactions on the one hand, and the effects of confined pore space on the other hand. The most prominent phenomenon observed in mesopores is pore condensation, which represents a first-order phase transition from a gas-like state to a liquid-like state of the pore fluid occurring at a pressure P less than the corresponding saturation pressure P 0 of the bulk fluid, i.e., pore condensation occurs at a chemical potential μ less than the value μ0 at gas-liquid coexistence of the bulk fluid. The relative pressure where this condensation occurs depends on the pore diameter. The relationship between the pore size and the relative pressure where capillary condensation occurs can be described by the classical Kelvin equation. However, in the classical Kelvin equation the shift from bulk coexistence (μ0 — μ), is expressed in terms of macroscopic quantities, whereas a more comprehensive understanding of the underlying physics was achieved only recently by applying microscopic approaches based on the Density Functional Theory (DFT), and computer simulation studies (Monte Carlo and Molecular Dynamics). We have discussed these different approaches from a more theoretical point of view in chapter 4. Here, we will discuss their significance for the pore size analysis of mesoporous materials.

Keywords

Hysteresis Loop Relative Pressure Porous Solid Desorption Branch Adsorbed Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson W.T. (1871) Philos. Mag. 42, 448;Google Scholar
  2. Zsigmondy Z. (1911) Anorg. Chem. 71, 356.CrossRefGoogle Scholar
  3. 2.
    Cohan L.H. (1938) J. Am. Chem. Soc. 60, 433;CrossRefGoogle Scholar
  4. Cohan L.H. (1944) J. Am. Chem. Soc. 66, 98.CrossRefGoogle Scholar
  5. 3.
    Shull C.G. (195 8) J. Am. Chem. Soc. 70, 1405.Google Scholar
  6. 4.
    Lippens B.C. and de Boer J.H. (1965) J. Catal. 4, 319.CrossRefGoogle Scholar
  7. 5.
    Pierce C. (1953) J. Phys. Chem. 57, 149.CrossRefGoogle Scholar
  8. 6.
    Harris M.R. and Sing K.S.W. (1959) Chem Ind. (London) 11.Google Scholar
  9. 7.
    Cranston R.W. and Inkley F.A. (1957) Adv. Catal. 9, 143.CrossRefGoogle Scholar
  10. 8.
    Halsey G.D. (1948) J. Chem. Phys. 16, 931.CrossRefGoogle Scholar
  11. 9.
    Lippens B.C., Linsen B.G. and de Boer J.H. (1964) J. Catal. 3, 32.CrossRefGoogle Scholar
  12. 10.
    Harkins W.D. and Jura G. (1944) J. Am. Chem. Soc. 66, 1366.CrossRefGoogle Scholar
  13. 11.
    Lippens B.C. and de Boer J.H. (1965) J. Catal. 4, 319;CrossRefGoogle Scholar
  14. Boer J.H., Lippens B.C., Linsen B.G., Broekhoff J.C.P., van den Heuvel A. and Onsinga T.V. (1966) J. Colloid Interface Sci. 21, 405.CrossRefGoogle Scholar
  15. 12.
    Kaneko K. (1994) J. Membrane Sci. 96, 59.CrossRefGoogle Scholar
  16. 13.
    Orr Jr C. and DallaValle J.M. (1959) Fine Particle Measurement, Macmillan, New York, chapter 10.Google Scholar
  17. 14.
    Barrett E.P., Joyner L.G. and Halenda P.P. (1951) J. Am. Chem. Soc. 73, 373.CrossRefGoogle Scholar
  18. 15.
    Dollimore D. and Heal G.R. (1964) J. Appl. Chem. 14, 109.CrossRefGoogle Scholar
  19. 16.
    Wheeler A. ( 1945, 1946 ) Catalyst Symposia, Gibson Island A.A.A.S. Conference.Google Scholar
  20. 17.
    Pierce C. and Smith R.N. (1953) J. Phys. Chem. 57, 64.CrossRefGoogle Scholar
  21. 18.
    Carman P.C. (1953) J. Phys. Chem. 57, 56.CrossRefGoogle Scholar
  22. 19.
    Oulton T.D. (1948) J. Phys. Colloid Chem. 52, 1296.CrossRefGoogle Scholar
  23. 20.
    Innes W.B. (1957) Anal. Chem. 29, 1069.CrossRefGoogle Scholar
  24. 21.
    Cranston R.W and Inkley F.A. (1957) Adv. Catal. 9, 143.CrossRefGoogle Scholar
  25. 22.
    Brunauer S., Mikhail R.S. and Bodor E.E. (1967) J. Colloid Interface Sci. 24, 451.CrossRefGoogle Scholar
  26. 23.
    Kiselev A.V. (1945) Usp. Khim. 14, 367.Google Scholar
  27. 24.
    Broad D.W. and Foster A.G. (1946) J. Chem. Soc. 4, 47;Google Scholar
  28. Foster A.G. (1934) Proc. Roy. Soc. London 147A, 128.CrossRefGoogle Scholar
  29. 25.
    McKee D.W. (1959) J. Phys. Chem. 63, 1256.CrossRefGoogle Scholar
  30. 26.
    Brown M J. and Foster A.G. (1951) J. Chem. Soc. 11, 39.Google Scholar
  31. 27.
    Gurvich L. (1915) J. Phys. Chem. Soc. Russ. 47, 805.Google Scholar
  32. 28.
    Melrose J.C. (1966) Am. Inst. Chem. Eng. 12, 986.CrossRefGoogle Scholar
  33. 29.
    AhnW.S., Jhou M.S., Pak H. and Chang S. (1972) J. Colloid Interface Sci. 38, 605.Google Scholar
  34. 30.
    Zhu H.Y., Ni L.A. and Lu G.Q. (1999) Langmuir 15, 3632.CrossRefGoogle Scholar
  35. 31.
    Galarneau A., Desplantier D., Dutartre R. and Di Renzo F. (1999) Microporous Mesoporous Mater. 27, 297.CrossRefGoogle Scholar
  36. 32.
    Broekhoff J.C.P. and de Boer J.H. (1968) J. Catal. 10, 377;CrossRefGoogle Scholar
  37. Broekhoff J.C.P. and de Boer J.H. (1968) J. Catal. 10, 391;CrossRefGoogle Scholar
  38. Broekhoff J.C.P. and de Boer J.H. (1967) J. Catal. 9, 15.CrossRefGoogle Scholar
  39. 33.
    Cole M.W. and Saam W.F. (1974) Phys.Rev.Lett. 32, 985.CrossRefGoogle Scholar
  40. 34.
    Zhu H.Y., Ni L.A. and Lu G.Q. (1999) Langmuir 15, 3632.CrossRefGoogle Scholar
  41. 35.
    Sonwane C.G. and Bhatia S.K. (2002) In Fundamentals of Adsorption 7 (Kaneko K., Kanoh H. and Hanzawa Y., eds.) IK International Ltd, Chiba City, Japan, p999.Google Scholar
  42. 36.
    Groen J.C., Doorn M.C. and Peffer L.A.A. (2000) In Adsorption Science and Technology ( Do D.D., ed.) World Scientific, Singapore, p229.Google Scholar
  43. 37.
    Linden M., Schacht S., Schueth F., Steele A. and Unger K. (1998) J. Porous Mater. 5, 177.CrossRefGoogle Scholar
  44. 38.
    Kruk M., Jaroniec M. and Sayari A. (1997) J. Phys. Chem. B 101, 583;Google Scholar
  45. Kruk M. and Jaroniec M. (2000) Chem. Mater. 12, 222.CrossRefGoogle Scholar
  46. 39.
    Ravikovitch P.I., Vishnyakov A. and Neimark A.V. (200 1) Phys. Rev. E, 64,: 01 1602Google Scholar
  47. 40.
    Gubbins K.E (1997) In Physical Adsorption: Experiment, Theory and Application ( Fraissard J., ed) Kluwer, Dordrecht, p65.Google Scholar
  48. 41.
    Neimark A.V., Ravikovitch P.I., Grün M., Schüth F. and Unger K.K. (1998) J. Coll. Interface Sci. 207, 159.CrossRefGoogle Scholar
  49. 42.
    Di Renzo F., Galarneau A., Trens P., Tanchoux N. and Fajula F. (2002) Stud. Surf. Sci. Catal. 142, 1057.CrossRefGoogle Scholar
  50. 43.
    Neimark A.V., Ravikovitch P.I. and Vishnyakov A. (2003) J. Phys. Condens. Matter 1, 347.CrossRefGoogle Scholar
  51. 44.
    Evans R. (1990) J. Phys. Condens. Matter 2, 8989.CrossRefGoogle Scholar
  52. 45.
    Ravikovitch P.I. and Neimark A.V. (200 1) Colloids and Surfaces A: Physicochemical and Engineering Aspects 187, 11.Google Scholar
  53. 46.
    Neimark A.V. and Ravikovitch P.I. (2001) Microporous Mesoporous Mater. 44-56, 697.Google Scholar
  54. 47.
    Thommes M., Koehn R. and Froeba M. (2002) Appl. Surf. Sci. 196, 239;CrossRefGoogle Scholar
  55. Thommes M., Koehn R. and Froeba M. (2000) J. Phys. Chem B 104, 7932.CrossRefGoogle Scholar
  56. 48.
    Awschalom D.D., Warnock J. and Shafer M.W. (1986) Phys. Rev. Lett. 57, 1607.CrossRefGoogle Scholar
  57. 49.
    Thommes M. ( 2004, in print) In Nanoporous Materials–Science and Engineering ( Lu G.Q., ed.) World Scientific, Sydney, Chapter 11.Google Scholar
  58. 50.
    Rojas F., Kornhauser I., Felipe C., Esparza J.M., Cordero S., Dominguez A. and Riccardo J.L. (2002) Phys. Chem. Chem. Phys. 4, 2346.CrossRefGoogle Scholar
  59. 51.
    Mason G. (1982) J. Colloid Interface Sci. 88, 36.CrossRefGoogle Scholar
  60. 52.
    Kierlik E., Rosinberg M.L., Tarjus G. and Viot P. (2001) Phys. Chem. Chem. Phys 3, 1201.CrossRefGoogle Scholar
  61. 53.
    Woo H.J., Sarkisov L. and Monson P.A. (2001) Langmuir 17, 7472.CrossRefGoogle Scholar
  62. 54.
    Smarsly B., Goeltner C., Antonietti M., Ruland W. and Hoinkis E. (2001) J. Phys. Chem.B 105, 831.CrossRefGoogle Scholar
  63. 55.
    Gregg S.J. and Sing K.S.W. (1982) Adsorption, Surface Area and Porosity, Academic Press, London.Google Scholar
  64. 56.
    Burgess C.G.V. and Everett D.H. (1970) J. Colloid Interface Sci. 33, 611.CrossRefGoogle Scholar
  65. 57.
    Ravikovitch P.I. and Neimark A.V. (2002) Langmuir 18, 9830.CrossRefGoogle Scholar
  66. 58.
    Schreiber A., Reinhardt S. and Findenegg G.H. (2002) Stud. Surf. Sci. Catal. 144, 177.CrossRefGoogle Scholar
  67. 59.
    Sonwane C.G. and Bhatia S.K. (1999) Langmuir 15, 5347.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations