Advertisement

Periphyton in running waters — long-term studies of natural variation

  • Eli-Anne Lindstrøm
  • Stein W. Johansen
  • Tuomo Saloranta
Part of the Developments in Hydrobiology book series (DIHY, volume 177)

Abstract

The objective of this study in River Atna, Norway, was to analyse the spatial and temporal variation in species composition and diversity of the periphyton community in a pristine sub-alpine / boreal watercourse. The variations in the biotic parameters were related to selected environmental factors. We addressed epilithic algae and species living epiphytic on epilithic algae and submerged bryophytes. The sampling sites were located in the alpine, northern boreal, and mid boreal biomes. There was considerable spatial variation in species composition and diversity. This variation showed close correlation with natural gradients in water temperature and nutrient concentration. Three or four periphyton community categories could be distinguished in terms of species composition, diversity, and environmental variables. At high altitudes (1150–740 m a.s.l.) in cold water temperatures and extremely low nutrient contents, there was very low species diversity, only including algae known from ultra oligothrophic cold waters, e.g. Scytonematopsis starmachii (cyanobacteria) and Klebshormidium rivulare (green algae). The second category, at medium altitudes (701-522 m a.s.l.), was characterised by somewhat higher water temperatures and nutrient contents, and the species diversity was higher. This category included algae known from somewhat richer waters, e.g. Stigonema mamillosum (cyanobacteria) and Zygnema spp. (green algae). The third category was located at approx. 522 m a.s.l., had low water temperatures, relatively high alkalinity, and was characterised by Tolypothrix distorta (cyanobacteria) and Ulothrix zonata (green algae). A possible fourth category was found in the lower part of the river (350 m a.s.l.), where periphyton was distinguished by high diversity. At the individual sampling localities, species diversity showed strong seasonal variation, but otherwise high temporal stability. Over the 12 years of observations, there was only a weak temporal trend; towards species initially occurring only at low altitudes and high nutrient content. The combination of high temporal stability and high spatial variability, correlating closely with environmental gradients, is the main reason why periphyton observations have become an important constituent in water quality assessment.

Key words

Periphyton reference conditions Norway natural variation species composition species diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhaus, D., 1968. Ökologische Untersuchungen an den Aufwuchsalgen der obersten Donau und ihrer Quellflüsse III. Die Algenverteilung und ihre Beziehungen zur Milieuofferte. Archiv für Hydrobiologie Supplement 34: 130–149.Google Scholar
  2. Biggs, B. J. F., 1996. Patterns in benthic algae in streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Aquatic Ecology Series. Acadamic Press, San Diego, CA: 31–56.Google Scholar
  3. Biggs B. J. F. & H. A. Thompson, 1995. Disturbance in stream periphyton by perturbations in shear stress: time to structural failure and differences in community resistance. Journal of Phycology 31: 233–241.CrossRefGoogle Scholar
  4. Blakar, I. A., 1994. Vannkvalitet. In Braadland, T. & J. Øvstedal (eds), FORSKREF Forsknings- og referansevassdrag. Årsrapport 1993. FORSKREF Rapport 1–1994: 33–39 (in Norwegian)Google Scholar
  5. Blakar I. A., 1997. Vannkvalitet i Atna i 1994. In Fagerlund, K. H. & Ø. Grundt (eds), FORSKREF Forsknings- og referansevassdrag. Arsrapport 1994. FORSKREF Rapport nr. 01–1997: 29–35.Google Scholar
  6. Blakar, I. A., & I. Digernes, 1989. Vannkvalitet i Atnavasssdraget. MVU-rapport nr. B56: 1–41 (in Norwegian).Google Scholar
  7. Blakar, I. A. & I. Digernes, 1993. Vannkvalitet i Atnavassdraget, 1989–92. In Rosland, D. S. (ed.), FORSKREF Forskningsog referansevassdrag. State Pollution Authority, Oslo. Seminar Report 1–93: 23–30 (in Norwegian).Google Scholar
  8. Blakar, I. A. & I. Digernes, 1999. Vannkvaliteten langs en høøydegradient i Atna (1996). In Grøstad, M. & K. H. Fagerlund (eds), FORSKREF Forsknings- og referansevassdrag. Årsrapport 1996. FORSKREF rapport nr. 01–1999: 32–40 (in Norwegian).Google Scholar
  9. Bogen, J., 2004. Erosion and sediment yield in the Atna river basin. Hydrobiologia 521: 35–47.CrossRefGoogle Scholar
  10. Golubic, S., 1967. Algenvegetation der Felsen. Eine ökologische Algenstudie im dinarischen Karstgebiet. Die Binnengewässer 23: 1–188.Google Scholar
  11. Henriksen, A., 1999. Tålegrenser i fjellomräder. Hva vet vi og hva bør vi vite? Naturens tälegrenser. Fagrapport nr. 101. NIVA rapport 4017: 1–87 (in Norwegian).Google Scholar
  12. Hill, B. H., A. T. Herlihy, P. R. Kaufmann, J. R. Stevenson, F. H. McCormick & C.B. Johnson, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.CrossRefGoogle Scholar
  13. Hill, M. O., 1973. Reciprocal averaging - eigenvector method of ordination. Journal of Ecology 61: 237–244.CrossRefGoogle Scholar
  14. Israelsson, G., 1949. On some attached zygnemals and their significance in classifying streams. Botaniska Notiser 4, Lund, Sweden: 313–358.Google Scholar
  15. Jarlman, A., E-A. Lindstrøm, P. Eloranta & R. Bengtsson, 1996. Nordic standard for assessment of environmental quality in running water. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. STUDIA, Innsbruck: 17–28.Google Scholar
  16. Johansson, C., 1982. Attached algal vegetation in running waters of Jämtland, Sweden. Acta Phytogeographica Suecica 71, Uppsala, Sweden, 84 pp.Google Scholar
  17. Kann, E., 1978. Systematik und Ökologie der Algen der österreichischer Bergbäche. Archiv für Hydrobiologie Supplement 53: 405–643.Google Scholar
  18. Kelly, M., A. Cazaubon, E. Coring, A. Del’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kaweka, J. Kwandrans, R. Laugaste, E.-A. Lindstrøm, M. Leitao, P. Marvan, J. Padisak, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  19. Knutzen, J., L. Lingsten, E.-A. Lindstrøm, T. S. Traaen & K. J. Aanes, 1980. Nasjonalt programme for overväking av vannresurser. Pilotprosjekt MålselvaBarduelva 1978. NIVA rapport 1187: 1–55 (in Norwegian).Google Scholar
  20. Komárek, J. & K. Anagnostodis, 1999. Cyanoprocaryota, 1. Teil Chroococcales. Süsswasserflora von Mitteleuropa, 19. Gustav Fisher Verlag, Jena, 548 pp.Google Scholar
  21. Kovácik, L. & J. Komárek, 1988. Scytomenatopsis starmachii, a new cyanophyte species from the high Tatra Mts. (Czecholovakia). Archiv für Hydrobiologie Supplement 80: 303–314.Google Scholar
  22. Kwandrans, J., P. Eloranta & R. Bengtsson, 2002. Sötvattensrødalger i Sverige - en översikt och ett nyfynd. Svensk Botanisk Tidskrift 96(6): 274–280.Google Scholar
  23. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Bentological Society 19: 573592.Google Scholar
  24. Lindstrøm, E.-A., 1989. Forsknings- og referansevassdrag Atna. Begroingsforhold i Atnavassdraget. MVU-rapport B54: 1–55.Google Scholar
  25. Lindstrøm, E.-A., 1992. Tålegrenser for overflatevann. Fastsittende alger. Fagrapport 27. NIVA rapport 2805: 1–49 (in Norwegian).Google Scholar
  26. Lindstrøm, E.-A., 1999. Attempts to assess biodiversity of epilithic algae in running water in Norway. In Prygiel, J., B. Whitton & J. Bukowska (eds), Use of Algae for Monitoring Rivers III, Douai, France: 253–260.Google Scholar
  27. Lindstrøøm, E.-A., 2000. Fastsittende alger i rennende vann. En kunnskapsstatus om biologisk mangfold langs naturgitte og mennneskeskapte gradienter. Virkninger av forurensninger på biologisk mangfold. NIVA rapport 4303: 1–68 (in Norwegian).Google Scholar
  28. Lindstrøm, E.-A. & S. W. Johansen, 1997. Forskref-vassdraget Atna. Begroingsobservasjoner i perioden 1986–95. NIVA rapport 3777: 1–67 (in Norwegian).Google Scholar
  29. Lindstrøm, E.-A. & S. W. Johansen, 2001. Mengdemessig utvikling av algebegroing etter kalking - årsaker og effekter. Ars og datarapport for 1998, 1999 og 2000. NIVA rapport 4451: 1–59 (in Norwegian).Google Scholar
  30. Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological monitors. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Aquatic Ecology Series. Acadamic Press, San Diego, CA: 705–739.Google Scholar
  31. Margaleff, R., 1960. Ideas for a synthetic approach to the ecology of running waters. Internationale Revue der Gesamten Hydrobiologie 45: 133–153.CrossRefGoogle Scholar
  32. Moen, A., 1998. Nasjonalatlas for Norge: Vegetasjon. Statens Kartverk, Hønefoss, 199 pp. (in Norwegian).Google Scholar
  33. Mollenhauer, D., R. Bengtsson & E.-A. Lindstrøm, 1999. Macroscopic cyanobacteria of the genus Nostoc: a neglected end endangered constituent of European inland aquatic biodiversity. European Journal of Phycology 34: 349–360.Google Scholar
  34. Nordli, P. ø. & A. A. Grimenes, 2004. The climate of Atndalen. Hydrobiologia 521: 7–20.CrossRefGoogle Scholar
  35. Palmer, M. W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.CrossRefGoogle Scholar
  36. Pipp, E. & E. Rott, 1994. Bestimmung der ökologischen Wertigkeit von Fliesgewässern in Österreich nach dem Algenaufwuchs. Bundesministerium für Umwelt, Jugend und Familie, Wien. Prosjekt 3117, 147 pp.Google Scholar
  37. Prygiel, J., B. A. Whitton & J. Bukowska, 1999. Use of Algae for Monitoring Rivers III. Douai, France, 271 pp.Google Scholar
  38. Rai, L. C. & J. P. Gaur, 1994. Algae and water pollution. Archiv für Hydrobiologie Beiheft 42: 1–304.Google Scholar
  39. Rott, E., G. Hofmann, K. Pall, P. Pfiester & E. Pipp, 1997. Indikatorlisten für Aufwuchsalgen. Teil 1: Saprobielle Indikatoren. Bundesministerium für Land- und Forstwirtschaft, Wasserwirtschaftskataster, Wien, 73 pp.Google Scholar
  40. Schmedtje, U. & A. Bauer, 1998. Tropiekartierung von aufwuchsund Makrophyten-dominierten Fliessgewässern. Bayerisches Landesamt für Wasserwirtschaft, München. Informationsberichte Heft 4/98, 501 pp. Selvig, E., 1992. Verdien av norsk vassdragsnatur i internasjonal sammenheng. Rapportserie fra SUM, serie A 1/92 Miljøstudier. University of Oslo, Norway, 172 pp.Google Scholar
  41. SFT, 1998. Statlig program for forurensningsovervåking. Overvåking av langtransportert forurenset luft og nedbør. Arsrapport - Effekter 1997. SFT-rapport 748/98: 1–217 (in Norwegian).Google Scholar
  42. Sjörs, H., 1967. Nordisk Växtgeografi. Bonniers, Stockholm, 220 pp.Google Scholar
  43. Skuja, H., 1964. Grunzüge der Algenflora und Algenvegetation der Fjellgegenden um Abisko in Schwedish-Lappland. Nova Acta Regiae Societas Scientiarum Uppsaliensis, Serie IV, 18(3), 465 pp.Google Scholar
  44. Sørensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biologiske Shifter 5, paper 4.Google Scholar
  45. Stevenson, R. J., M. L. Bothwell & R. L. Lowe, 1996. Algal Ecology. Freshwater Benthic Ecosystems. Aquatic Ecology Series. Acadamic Press, San Diego, CA, 753 pp.Google Scholar
  46. Stevenson, R. J. & Y. Pan, 1999. Assessing ecological conditions in rivers and streams with diatoms. In Stoermer, E. & J. P. Smol (eds), The Diatoms: Applications to Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK: 11–44.Google Scholar
  47. Tolstoy, A. & W. Willen, 1997. Preliminär checklista över Makroalger i Sverige. Artdatabanken, SLU, Uppsala, 127 pp.Google Scholar
  48. Tvede, A. M., 2004. Hydrology of Lake Atnsjøen and River Atna. Hydrobiologia 521: 21–34.CrossRefGoogle Scholar
  49. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 103–137.CrossRefGoogle Scholar
  50. Wallin, M., T. Wiederholm & R. K. Johnson, 2002. Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. 5th and final draft, version 2002–12-20. CIS Working Group 2.3 - REFCOND, 98 pp.Google Scholar
  51. Wehr, J. D., 1979. Analysis of patterns in algal community structure in the North Alouette River watershed, British Columbia. MSc.Thesis, University of British Columbia, Vancouver, B.C., 120 pp.Google Scholar
  52. Wehr, J. D., 1981. Analysis of seasonal succession of attached algae in a mountain stream, the North Alouette Rriver, British Columbia. Canadian Journal of Botany 59: 1465–1474.CrossRefGoogle Scholar
  53. Whitton, B. A., E. Rott & G. Friedrich, 1991. Use of Algae for Monitoring Rivers. Studia, Innsbruck, 193 pp.Google Scholar
  54. Wickmann, L., 1937. Studien über die durch H-Stück-Bau der Membran angezeichneten Gattungen Microspora, Binuclearia, Ulotrichopsis und Tribonema. Pflanzenforschung 20, Gustav Fischer Verlag, Jena, 110 pp.Google Scholar
  55. Wilson E. O., 1997. Introduction. In Reaka-Kudla, M. L., D. E. Wilson & E. O. Wilson (eds), Biodiversity II. Understanding and Protecting our Biological Resources. Washington, D.C., 551 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Eli-Anne Lindstrøm
    • 1
  • Stein W. Johansen
    • 1
  • Tuomo Saloranta
    • 1
  1. 1.Norwegian Institute for Water ResearchOsloNorway

Personalised recommendations