Advertisement

Screening and Absorption of Gravitation in Pre-Relativistic and Relativistic Theories

  • H.-H. von Borzeszkowski
  • T. Chrobok
  • H.-J. Treder
Part of the NATO Science Series book series (NAII, volume 141)

Abstract

After commenting on the early search for a mechanism explaining the Newtonian action-at-a-distance gravitational law we review non-Newtonian effects occurring in certain ansatzes for shielding, screening and absorption effects in pre-relativistic theories of gravity. Mainly under the aspect of absorption and suppression (or amplification), we then consider some implications of these ansatzes for relativistic theories of gravity and discuss successes and problems in establishing a general framework for a comparison of alternative relativistic theories of gravity. We examine relativistic representatives of theories with absorption and suppression (or amplification) effects, such as fourth-order theories, tetrad theories and the Einstein-Cartan-Kibble-Sciama theory.

Keywords

Field Equation Gravitational Field Matter Source Gravitational Theory Tetrad Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Andrade Martins, R. (1999) The Search for Gravitational Absorption in the Early Twentieth Century, in H. Goenner, J. Renn, J. Ritter and T. Sauer (eds.), The Expanding Worlds of General Relativity, Birkhäuser, Boston etc., pp. 3–44.CrossRefGoogle Scholar
  2. 2.
    Aronson, S. (1964) The Gravitational Theory of Georges-Louis Le Sage, The Natural Philosopher 3, 51–74.Google Scholar
  3. 3.
    Bach, R. (1921) Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffes, Math. Z. 9, 110–123.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bäuerle, G. G. A. and Haneveld, Chr. J. (1983) Spin and Torsion in the Very Early Universe, Physica 121A, 541–551.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barrow, J. D. and Ottewill, A. C. (1983) The Stability of General Relativistic Cosmological Theory, J. Phys. A 16, 2757–2776.Google Scholar
  6. 6.
    Berkin, A. L. (1990) R2 Inflation in Anisotropic Universes, Phys. Rev. D42, 1017–1022.MathSciNetCrossRefGoogle Scholar
  7. 7.
    v. Borzeszkowski, H.-H. (1976) On the Gravitational Collapse in Relativistic Theories of Gravitation, Ann. Phys. (Leipzig) 33, 45–54.ADSGoogle Scholar
  8. 8.
    v. Borzeszkowski, H.-H. (1981) High-frequency Waves in Gravitational Theories with Fourth-order Derivative equations, Ann. Phys. (Leipzig) 38, 231–238.ADSGoogle Scholar
  9. 9.
    v. Borzeszkowski, H.-H. (1981) On Singularities of General Relativity and Gravitational Equations of Fourth Order, Ann. Phys. (Leipzig) 38, 239–248.ADSGoogle Scholar
  10. 10.
    v. Borzeszkowski, H.-H. and Frolov, V. P. (1980) Massive Shell Models in the Gravitational Theories with Higher Derivatives, Ann. Phys. (Leipzig) 37, 285–293.ADSGoogle Scholar
  11. 11.
    v. Borzeszkowski, H.-H., Kasper, U., Kreisel, E., Liebscher, D.-E., and Treder, H.-J. (1971) Gravitationstheorie und Aquivalenzprinzip, ed. by H.-J. Treder, Akademie-Verlag, Berlin.Google Scholar
  12. 12.
    v. Borzeszkowski, H.-H. and Treder, H.-J. (1996) Mach-Einstein Doctrine and General Relativity, Found. Phys. 26, 929–942.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    v. Borzeszkowski, H.-H. and Treder, H.-J. (1998) Dark Matter versus Mach’s Principle, Found. Phys. 28, 273–290.MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    v. Borzeszkowski, H.-H. and Treder, H.-J. (1998) Mach’s Principle Could Save the Gravitons, Apeiron 5, 143.Google Scholar
  15. 15.
    v. Borzeszkowski, H.-H. and Treder, H.-J. (2000) Bohr’s and Mach’s Conceptions of Non-Locality in Gravity, in P. G. Bergmann, V. de Sabbata and J. N. Goldberg (eds.), Classical and Quantum Nonlocality: Proceeding of 16th Course of the International School of Cosmology and Gravitation, World Scientific, Singapore etc., pp. 1–20.Google Scholar
  16. 16.
    v. Borzeszkowski, H.-H. and Treder,_ H.-J. (2001) Spinorial Matter in Affine Theory of Gravity and the Space Problem, Gen. Rel. Gray. 33, 1351–1369.ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    v. Borzeszkowski, H.-H. and Treder, H.-J. (2002) On Matter and Metric in Affine Theory of Gravity, Gen. Rel. Gray. 34, 1909–1918.zbMATHCrossRefGoogle Scholar
  18. 18.
    v. Borzeszkowski, H.-H., Treder, H.-J., and Yourgrau, W. (1978) Gravitational Field Equations of Fourth Order and Supersymmetry, Ann. Phys. (Leipzig) 35, 471–480.ADSGoogle Scholar
  19. 19.
    v. Borzeszkowski, H.-H., Treder, H.-J., and Yourgrau, W. (1979) On Singularities in Electrodynamics and Gravitational Theory, Astron. Nachr 300, 57.ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Bopp, F. (1940), Ann. Phys. (Leipzig) 38, 354.MathSciNetGoogle Scholar
  21. 21.
    Bottlinger, K. F. (1912) Die Erklärung der empirischen Glieder der Mondbewegung durch die Annahme einer Extinktion der Gravitation im Erdinnern, Astronomische Nachrichten 191, 147.ADSCrossRefGoogle Scholar
  22. 22.
    Bottlinger, K. F. (1912) Die Gravitationstheorie und die Bewegung des Mondes, C. Trömer, Freiburg.Google Scholar
  23. 23.
    Brans, C., and Dicke, R. H. (1961) Mach’s Principle and a relativistic theory of gravitation, Physical Review 124, 925–935.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Buchdahl, H. A. (1964), Nuovo Cimento 123, 141.Google Scholar
  25. 25.
    Capper, D. M. and Duff, I. (1974) The One-loop Neutrino Contribution to the Graviton Propagator, Nucl. Phys. B82, 147–154.Google Scholar
  26. 26.
    Chen, Yihan, and Shao, Changgui (2001) Linearized Higher-order Gravity and Stellar Structure, Gen. Rel. Gray. 33; 1267–1279.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Crowley, R. H., Woodward, J. F., and Yourgrau, W. (1974) Gravitational Attenuation and the Internal Heating of Planetary Bodies, Astronomische Nachrichten 295, 203.ADSCrossRefGoogle Scholar
  28. 28.
    Deser, S. and van Nieuwenhuizen, P. (1974) One-loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D10, 401–410; Nonrenormalizability of the Quantized Dirac-Einstein-System, Phys. Rev. D10, 411–420.MathSciNetADSGoogle Scholar
  29. 29.
    DeWitt, B. S. (1965) Dynamical Theory of Groups and Fields, Gordon and Breach, London.zbMATHGoogle Scholar
  30. 30.
    DeWitt, B. S. (1975) Quantum Field Theory in Curved Spacetime, Phys. Rep. 19 C, 295–357.Google Scholar
  31. 31.
    Dicke, R. H. (1964) Remarks on the Observational Basis of General Relativity, in H.-Y. Chiu and W. F. Hoffman (eds.), Gravitation and Relativity, Benjamin, New York, pp. 1–16.Google Scholar
  32. 32.
    Dirac, P. A. M. (1937) The Cosmological Constants, Nature 139, 323.ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Drude, P. (1897) Uber Fernwirkungen, Beilage zu Annalen der Physik 62.Google Scholar
  34. 34.
    Eckardt, D. H. (1990) Gravitational Shielding, Physical Review D42, 2144–2145.Google Scholar
  35. 35.
    Eddington, A. S. (1953) Fundamental Theory,Cambridge U. P. Cambridge.Google Scholar
  36. 36.
    Einstein, A. (1917) Uber spezielle und allgemeine Relativitätstheorie, F. Vieweg, Braunschweig.Google Scholar
  37. 37.
    Einstein, A. (1919), Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p.349.Google Scholar
  38. 38.
    Einstein, A. (1919) Bemerkungen über periodische Schwankungen der Mondlänge, welche bisher nach der Newtonschen Mechanik nicht erklärbar schienen, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 433–436.Google Scholar
  39. 39.
    Einstein, A. (1919) Bemerkungen zur vorstehenden Notiz, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 711.Google Scholar
  40. 40.
    Einstein, A. (1921), Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p.261.Google Scholar
  41. 41.
    Einstein, A. (1923) Zur allgemeinen Relativitätstheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 32–38.Google Scholar
  42. 42.
    Einstein, A. (1923) Bemerkung zu meiner Arbeit ‘Zur allgemeinen Relativitätstheorie’, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 76–77.Google Scholar
  43. 43.
    Einstein, A. (1923) Zur affinen Theorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 137–140.Google Scholar
  44. 44.
    Einstein, A. (1927) Zu Kaluzas Theorie des Zusammenhanges von Gravitation und Elektrizität I, II, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 23–30.Google Scholar
  45. 45.
    Einstein, A. (1928) Riemann-Geometrie mit Aufrechterhaltung des Begriffs des Fernparallelismus, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 217–221.Google Scholar
  46. 46.
    Einstein, A. (1928) Neue Möglichkeiten für eine einheitliche Feldtheorie von Gravitation und Elektrizität, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 224–227.Google Scholar
  47. 47.
    Einstein, A. (1929) Zur einheitlichen Feldtheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 2–7.Google Scholar
  48. 48.
    Einstein, A. (1929), Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p.124.Google Scholar
  49. 49.
    Einstein, A. (1940), Ann. Math. 40, 922.Google Scholar
  50. 50.
    Einstein, A. ( 1950 and 1955) The Meaning of Relativity, 4th and 5th edn., Princeton U. P., Princeton.zbMATHGoogle Scholar
  51. 51.
    Einstein, A. and Mayer, W. (1931) Systematische Untersuchung über kompatible Feldgleichungen, welche in einem Riemannschen Raum mit Fernparallelismus gesetzt werden können, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 257–265.Google Scholar
  52. 52.
    Einstein, A. and Pauli, W. (1943) Non-Existence of Regular Stationary Solutions of Relativistic Field Equations, Ann. Math. 44, 131–137.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity, Phys. Rev. 48, 73–77.ADSCrossRefGoogle Scholar
  54. 54.
    Giesswein, M., Sexl, R., and Sreeruwitz (1976), in A. A. Sokolov (ed.), Aktualnye problemi teoretitsheskoy fiziki, Moscow U. P., Moscow.Google Scholar
  55. 55.
    Gillies, G. T. (1987) The Newtonian Gravitational Constant, Metrologia-International Journal of Scientific Metrology 24 (Supplement), 1.Google Scholar
  56. 56.
    Gillies, G. T. (1998) Modern Perspectives on Newtonian Gravity, in P. G. Bergmann, V. de Sabbata, G. T. Gillies, and P. I. Pronin (eds.), Spin in Gravity. Is their a Possibility to Give an Experimental Basis to Torsion?, World Scientific, Singapore etc., pp..Google Scholar
  57. 57.
    Haugan, M. P. and Lämmerzahl, C. (2001) Principles of Equivalence: Their Role in Gravitation Physics and Experiments that Test them, in C. Lämmerzahl, C. F. W. Everitt, and F. W. Hehl (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Springer, Berlin etc., pp. 195–213.CrossRefGoogle Scholar
  58. 58.
    Havas, P. (1977), Gen. Rel. Gray. 8, 631.MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. 59.
    Hayashi, K. and Shirafuji, T. (1979) New General Relativity, Phys. Rev. D19, 3524–3553.MathSciNetADSGoogle Scholar
  60. 60.
    Hecker, O. (1907) Beobachtungen mit dem Horizontalpendel, Veröffentlichungen des Geodätischen Instituts Potsdam, No. 32.Google Scholar
  61. 61.
    Hehl, F. W., van der Heyde, P., and Kerlick, G. D. (1976) General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48, 393–416.ADSCrossRefGoogle Scholar
  62. 62.
    Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne’eman, Y. (1995) Metric-affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilaton Invariance, Phys. Rep. 258, 1–171.Google Scholar
  63. 63.
    Hennig, J. and Nitsch, J. (1981), Gen. Rel. Gray. 13 1947; Müller-Hoissen, F. and Nitsch, J. (1982) report, (unpublished)Google Scholar
  64. 64.
    Isenkrahe, C. (1879) Das Rätsel von der Schwerkraft, F. Vieweg, Braunschweig.Google Scholar
  65. 65.
    Ivanenko, D. D. and Sokolov, A. A. (1953) Klassische Feldtheorie, Akademie-Verlag, Berlin.Google Scholar
  66. 66.
    Jordan, P. (1947) Die Herkunft der Sterne, F. Vieweg, Braunschweig.Google Scholar
  67. 67.
    Jordan, P. (1952) Schwerkraft und Weltall, F. Vieweg, Braunschweig.zbMATHGoogle Scholar
  68. 68.
    Kibble, T. W. B. (1961) Lorentz Invariance and the Gravitational Field, J. Math, Phys. 2, 212–221.MathSciNetzbMATHGoogle Scholar
  69. 69.
    Kopczynski, W. (1972; 1973 ) A Non-singular Universe with Torsion. Phys. Lett. 39A, 219–220.; An Anisotropic Universe with Torsion. Phys. Lett. 43A, 63–64.Google Scholar
  70. 70.
    Kopczyöski, W. (1982) Metric-teleparallel Theories of Gravitation, J. Phys. A15, 493–506.MathSciNetCrossRefGoogle Scholar
  71. 71.
    Korotkii, V.A. and Obukhov, Yu.N. (1987) The Weyssenhoff Fluid in Einstein-Cartan Theory, Class. Quant. Gray. 4, 1633–1657.MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Kuchowicz, B. (1975; 1976 ) The Einstein-Cartan Equations in Astrophysically Intersting Situations. I. The Case of Spherical Symmetry. Acta Phys. Pol. B 6, 555–575.; The Einstein-Cartan Equations in Astrophysically Intersting Situations. II. Homogeneous Cosmological Models of Axial Symmetry. Acta Phys. Pol. B 7, 81–97.Google Scholar
  73. 73.
    Lämmerzahl, C. (1998) Quantum Tests of Space-time Structure, in P. G. Bergmann, V de Sabbata, G. T. Gillies and P. I. Pronin (eds.), Spin in Gravity. Is their a Possibility to Give an Experimental Basis to Torsion?, World Scientific, Singapore etc., pp. 91–117.Google Scholar
  74. 74.
    Lanczos, C. (1938), Ann. Math. 39, 842.MathSciNetCrossRefGoogle Scholar
  75. 75.
    Lanczos, C. (1975) Gravitation and Riemannian Space, Found. Phys. 5, 9–18.MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    de Laplace, P. S. (1825) Mécanique Céleste, Vol. 5, Bachelier, Paris; cf. also (1882) Oeuvres, Vol. 5, Bachelier, Paris.Google Scholar
  77. 77.
    v. Laue, M. (1953) Die Relativitätstheorie, Vol. II, 3rd ed. Vieweg, Braunschweig.zbMATHGoogle Scholar
  78. 78.
    Le Denmat, G. and Sirousse, Zia H. (1987) Equivalence Between Fourth-order Theories of Gravity and General Relativity: Possible Implications for the Cosmological Singularity, Phys. Rev. D35, 480–482.MathSciNetGoogle Scholar
  79. 79.
    Le Sage, G.-L. (1749) Essai sur l’origine des forces mortes, MS, Univ. of Geneva Library.Google Scholar
  80. 80.
    Le Sage, G.-L. (1784) Lucréce Newtonien, Memoires de l’ Académie Royale des Science et Belles-Lettres de Berlin, Berlin, pp. 1–28.Google Scholar
  81. 81.
    Levi-Civita, T. (1929 and 1931), Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin,p.2 and p.3257.Google Scholar
  82. 82.
    Liebscher, D.-E. (1969) On the Effect of Absorption of Gravitation, Int. J. Theor. Phys. 2, 89–100.CrossRefGoogle Scholar
  83. 83.
    Lomonosov, M. W. (1748) Letter no. 195 to Euler written in July 1748 (Correspondence between Euler and Lomonosov led in German and Latin), in: Wegbereiter der deutsch-slawischen Wechselseitigkeit, Vol. III, ed by A. P. Juskevic and E. Winter, Akademie-Verlag, Berlin, 1976; see also the other letters no. 193–202.Google Scholar
  84. 84.
    Maeda, Keiichi (1988) Inflation as a Transient Attractor in R2 Cosmology, Phys. Rev. D37, 858–862.ADSCrossRefGoogle Scholar
  85. 85.
    Magnano, G. and Sokolowski, L. M. (1994) Physical Equivalence between Nonlinear Gravity Theories and a Genneral-relativistic Self-gravitating Scalar Field, Phys. Rev. D50, 5039–5059.MathSciNetADSGoogle Scholar
  86. 86.
    Majorana, Q. (1919) Sur la gravitation, Comptes Rendus des Sèances de l’Académie de Sciences de Paris 169, 646–649.zbMATHGoogle Scholar
  87. 87.
    Majorana, Q. (1919) Expériences sur la gravitation, Comptes Rendus des Sèances de l’Académie de Sciences de Paris 169, 719.Google Scholar
  88. 88.
    Majorana, Q. (1920) On Gravitation. Theoretical and Experimental Researches, Philosophical Magazine 39 (Sixth series), 488–504.zbMATHGoogle Scholar
  89. 89.
    Majorana, Q. (1930) Quelques recherches sur l’absorption de la gravitation par la matiére, Journal de de Physique et le Radium 1 (Seventh series), 314.CrossRefGoogle Scholar
  90. 90.
    Maxwell, J. C. (1875) Atom, Encyclopaedia Britannica, 9th edn., Vol.3, Edinburgh.Google Scholar
  91. 91.
    Michelson, A. A. and Gale, H. L. (1919) The Rigidity of the Earth, Astrophysical Journal 50, 342.ADSCrossRefGoogle Scholar
  92. 92.
    Mijic, M. B., Morris, M. S., and Suen, W. M. (1986) The R2 Cosmology: Inflation without a Phase Transition, Phys. Rev. D34, 2934–2946.ADSGoogle Scholar
  93. 93.
    Moller, C. (1961) Conservation Laws and Absolute Parallelism in General Relativity, Math.-Fys. Skr. Dan. Vid. Selskab. 1, No. 10.Google Scholar
  94. 94.
    Moller, C. (1978) On the Crisis in the Theory of Gravitation and a Possible Solution, Math.-Fys. Skr. Dan. Vid. Selskab. 39, No. 13.Google Scholar
  95. 95.
    Müller-Hoissen, F. and Nitsch, J. (1983) Teleparallelism - A Viable Theory of Gravity?, Phys. Rev. 28, 718.MathSciNetGoogle Scholar
  96. 96.
    Neumann, C (1870) Allgemeine Untersuchungen über die Newtonsche Theorie der Fernwirkung, B. G. Teubner, Leipzig.Google Scholar
  97. 97.
    Nordtvedt, K. (1968) Equivalence Principle for Massive Bodies. I. Phenomenology, Phys. Rev. 69, 1014–1016; Equivalence Principle for Massive Bodies. II. Theory, Phys. Rev. 69, 1017–1025.ADSCrossRefGoogle Scholar
  98. 98.
    Pais, A. and Uhlenbeck, E. (1950) Field Theories with Non-localized Action, Phys. Rev. 79, 145–165.MathSciNetADSzbMATHCrossRefGoogle Scholar
  99. 99.
    Pauli, W. (1921), in Enzyklopädie der mathematischen Wissenschaften, vol. V/2, B. G. Teubner, Leipzig.Google Scholar
  100. 100.
    Pechlaner, E. and Sexl, R. (1966) On Quadratic Lagrangians in General Relativity, Comm. Math. Phys. 2, 165–175.MathSciNetADSzbMATHCrossRefGoogle Scholar
  101. 101.
    Pellegrini, C. and Plebanski, J. (1962; 1963 ) A Theory of Gravitation, Math.Fys. Skr. Dan. Vid. Selskab. 2, No.2; Tetrad Fields and Gravitational Fields, Math.-Fys. Skr. Dan. Vid. Selskab. 2, No. 4.Google Scholar
  102. 102.
    Podolsky, B. (1941) A Generalized Electrodynamics, Phys. Rev. 62, 68–71.MathSciNetADSCrossRefGoogle Scholar
  103. 103.
    Preston, S. T. and Tolver, S. (1877) On Some Dynamical Conditions Applicable to Le Sage’s Theory of Gravitation, Philosophical Magazine 4 (Fifth series), 365.Google Scholar
  104. 104.
    Preston, S. T. (1881) On the Importannce of Experiments in Relation to the Theory of Gravitation, Philosophical Magazine 11 (Fifth series), 391.Google Scholar
  105. 105.
    P. Prevost (1805), Notice de la Vie et des Ecrits de Georges-Louis Le Sage, J. J. Paschoud, Geneva.Google Scholar
  106. 106.
    Rooprai, N., Lohiya, D. (2001) Dynamically Tuning away the Cosmological Constant in Effective Scalar Tensor Theories, astro-ph/0101280.Google Scholar
  107. 107.
    Russell, H. N. (1921) On Majorana’s Theory of Gravitation, Astrophysical Journal 54, 334.ADSCrossRefGoogle Scholar
  108. 108.
    Sanders, R. H. and McGaugh, S. S. (2002) Modified Newtonian Dynamics as an Alternative to Dark Matter, astro-ph/0204521; to be published in: vol. 40 of Annual Reviews of Astronomy Sc Astrophysics.Google Scholar
  109. 109.
    Schouten, J. A. (1954) Ricci-Calculus, Springer, Berl in etc..zbMATHGoogle Scholar
  110. 110.
    Schrödinger, E. (1950) Space-Time-Structure, Cambridge U. P., Cambridge.zbMATHGoogle Scholar
  111. 111.
    Sciama, D W. (1962), in Recent Developments in General Relativity, Perga-mon, Oxford and PWN, Warsaw.Google Scholar
  112. 112.
    Sciama, D. W. (1964) The Physical Structure of General Relativity, Rev. Mod. Phys. 36, 463–469 and 1103.Google Scholar
  113. 113.
    v. Seeliger, H. (1895) fiber das Newton’sche Gravitationsgesetz, Astronomische Nachrichten 137, 129.Google Scholar
  114. 114.
    v. Seeliger, H. (1909) Über die Anwendung der Naturgesetze auf das Universum, Sitzungsberichte der Königlichen Bayrischen Akademie der Wissenschaften zu München, Matheur.-phys. Klasse 39 (4. Abhandlung).Google Scholar
  115. 115.
    Slichter; L. B., Caputo, M., and Hager, C. L. (1965) TITEL???, Journal of Geophysical Research 70, 1541.ADSCrossRefGoogle Scholar
  116. 116.
    Steenbeck, M. and Treder, 11.-J. (1984) Möglichkeiten der experimentellen Schwerkraftforschung, Akademie-Verlag, Berlin.Google Scholar
  117. 117.
    Stelle, K. S. (1977), Gen. Rel. Gray. 9, 353.MathSciNetADSCrossRefGoogle Scholar
  118. 118.
    Thomson, W. (Lord Kelvin) (1873) On the Ultramundane Corpuscles of Le Sage, Philosophical Magazine 45 (Fourth series), 328.Google Scholar
  119. 119.
    Thomson, W. (Lord Kelvin) (1903) Discussions in: Report of the Meeting of the British Association for the Advancement of Science 73, pp. 535–537.Google Scholar
  120. 120.
    Treder, H.-J. (1968) On the Question of a Cosmological Rest-mass of Gravitons, Int. J. Theor. Phys. 1, 167–169.CrossRefGoogle Scholar
  121. 121.
    Treder, H.-J. (1975) Zur unitarisierten Gravitationstheorie mit lang-und kurzreichweitigen Termen (mit ruhmasselosen und schweren Gravitonen), Ann. Phys. (Leipzig) 32, 383–400.MathSciNetADSGoogle Scholar
  122. 122.
    Treder, H.-J. (1975) Elementare Kosmologie, Akademie-Verlag, Berlin.Google Scholar
  123. 123.
    Treder, H.-J. (1976) Bottlingers und Majoranas Absorption der Gravitationskraft und der Gezeitenkräfte, Gerlands Beiträge der Geophysik 85, 513.Google Scholar
  124. 124.
    Treder, H.-J. (1977), in: 75 Jahre Quantentheorie, Akademie-Verlag, Berlin.Google Scholar
  125. 125.
    Treder, H.-J. (1978) Teilchen-Modelle und effektive Radien in der Allgemeinen Relativitätstheorie, Ann. Phys. (Leipzig) 35, 137–144.MathSciNetADSGoogle Scholar
  126. 126.
    Treder, G.-J. (1978) Einsteins Feldtheorie mit Fernparallelismus und Diracs Elektrodynamik, Ann. Phys. (Leipzig) 35, 377–388.ADSGoogle Scholar
  127. 127.
    Treder, H.-J. (1988) Zu den Einstein-Schrödingerschen Feldgleichungen mit Materie, Ann. Phys. (Leipzig) 45, 47–52.MathSciNetADSGoogle Scholar
  128. 128.
    Treder, H.-J. von Borzeszkowski, H.-H., van der Merwe, A., and Yourgrau, W. (1980) Fundamental Principles of General Relativity Theories. Local and Global Aspects of Gravitation and Cosmology,Plenum Press, New York and London.Google Scholar
  129. 129.
    Unnikrishnan, C. S. and Gillies, G. T. (2002) Constraints of Gravitational Shielding, in M. R. Edwards (ed.), Pushing Gravity, Apeiron, Montreal, pp. 259266.Google Scholar
  130. 130.
    Unnikrishnan, S., Mohapatra, A. K. and Gillies, G. T. (2001) Anomalus Gravity Data During the 1997 Total Eclipse do not Support the Hypothesis of Gravitational Shielding, Phys. Rev. D63, 06 2002.Google Scholar
  131. 131.
    Utiyama, R (1956) Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101, 1597–1607.MathSciNetADSzbMATHCrossRefGoogle Scholar
  132. 132.
    Weitzenböck, R. (1928) Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p. 466.Google Scholar
  133. 133.
    Weyl, H. (1918) Reine Infintesimal-Geometrie, Math. Z. 2, 384–411; see also [135].Google Scholar
  134. 134.
    Weyl, H. (1919) Eine neue Erweiterung der Relativitätstheorie, Ann. Phys. (Leipzig) 59, 101.ADSzbMATHGoogle Scholar
  135. 135.
    Weyl, H. (1921) Raum, Zeit, Materie, Springer, Berlin.zbMATHGoogle Scholar
  136. 136.
    Weyssenhoff, J. and Raabe, A. (1947) Relativistic Dynamics of Spin-fluids and Spin-particles. Acta Phys. Pol. 9, 7–18.MathSciNetGoogle Scholar
  137. 137.
    Whitt, B. (1984) Fourth-order Gravity as General Relativity plus Matter, Phys. Lett. 145B, 176–178.MathSciNetCrossRefGoogle Scholar
  138. 138.
    Will, C. M. (1993) Theory and Experiment in Gravitational Physics. Revised Edition, Cambridge U. P., Cambridge.CrossRefGoogle Scholar
  139. 139.
    Woodward, J. F. (1972) The Search for a Mechanism: Action-at-a-distance in Gravitational Theory, Ph.D. thesis, University of Denver.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H.-H. von Borzeszkowski
    • 1
  • T. Chrobok
    • 1
  • H.-J. Treder
    • 2
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.PotsdamGermany

Personalised recommendations