Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amezaga, I., & Rodriguez, M.A. 1998. Resource partitioning of four sympatric bark beetles depending on swarming dates and tree species. Forest Ecology and Management, 109, 127–35.CrossRefGoogle Scholar
  2. Anderbrandt, O. 1985. Dispersal of reemerged spruce bark beetles, Ips typographus (Coleoptera, Scolytidae): a mark-recapture experiment. Zeitschrift für Angewandte Entomologie, 99, 21–25.CrossRefGoogle Scholar
  3. Anderbrandt, O. 1986. A model for the temperature and density dependent reemergence of the bark beetle Ips typographus. Entomologia Experimentalis et Applicata, 40, 81–88.CrossRefGoogle Scholar
  4. Anderbrandt, O. 1988a. Survival of parent and brood adult bark beetles, Ips typographus, in relation to size, lipid content and re-emergence or emergence day. Physiological Entomology, 13, 121–29.Google Scholar
  5. Anderbrandt, O. 1988b. Reproduction and competition in the spruce barkbeetle Ips typographus. Thesis Lund University.Google Scholar
  6. Anderbrandt, O., & Löfqvist, J. 1988. Relation between first and second brood production in the bark beetle Ips typographus (Scolytidae). Oikos, 53, 357–65.CrossRefGoogle Scholar
  7. Anderbrandt, O., & Schlyter, F. 1989. Causes and effects of individual quality in bark beetles. Holartic Ecology, 12, 488–493.Google Scholar
  8. Anderbrandt, O., Schlyter, F., & Birgersson, G. 1985. Intraspecific competition affecting parents and offspring in the bark beetle Ips typographus. Oikos, 45,89–98.CrossRefGoogle Scholar
  9. Annila, E. 1969. Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Annales Zoologici Fennici, 6, 161–207.Google Scholar
  10. Annila, E. 1971. Sex ratio in Ips typographus L. (Col., Scolytidae). Annales Entomologici Fennici, 37, 7–14.Google Scholar
  11. Austarå, Ø., & Midtgaard, F. 1986. On the longevity of Ips typographus L. adults. Journal of Applied Entomology, 102, 106–11.Google Scholar
  12. Austarå, Ø., Midtgaard, F., & Sæther, T. 1993. Densities of hibernating Ips typographus in the forest litter around attacked and killed spruce trees, with records of spring emergence and flight patterns. Meddelelser fra Skogfosk, 46, 1–12.Google Scholar
  13. Bakke, A. 1968. Ecological studies on bark beetles (Coleoptera: Scolytidae) associated with Scots pine (Pinus sylvestris L.) in Norway with particular reference to the influence of temperature. Meddelelser fra det Norske Skogforsøksvesen,83,441–602.Google Scholar
  14. Bakke, A., & Strand, L. 1981. [In Norwegian] Pheromones and traps as part of an integrated control of the spruce bark beetles. Some results from a control program in Norway in 1979 and 1980. Rapport fra det Norsk Institutt for Skogforskning, 5, 1–39.Google Scholar
  15. Balachowsky, A. 1949. Faune de France. 50. Coléoptères Scolytides Paris: Librairie de la Faculté des Sciences.Google Scholar
  16. Barson, G. 1974. Some effects of freezing temperatures on overwintering larvae of the large elm bark beetle (Scolytus scolytus). Annals of Applied Biology, 78,219–24.Google Scholar
  17. Berryman, A.A. 1982. Population Dynamics of Bark Beetles. In: Bark beetles of North American Conifers. A System for the Study of Evolutionary Ecology, J.B. Mitton,K.B. Sturgeon (Eds.). Austin: University of Texas Press, 264–314.Google Scholar
  18. Berryman, A.A. 1987. The Theory and Classification of Outbreaks. In: Insect Outbreaks, P. Barbosa, J.C. Schultz (Eds.). San Diego: Academic Press, 3–30.Google Scholar
  19. Biermann, G.M. 1977. Zur Überwinterung des Buchdruckers, Ips typographus (L.), in der Bodenstreu (Col., Scolytidae). Zeitschrift für Angewandte Entomologie, 84, 59–74.CrossRefGoogle Scholar
  20. Birgersson, G., Schlyter, F., Bergström, G., & Löfqvist, J. 1988. Individual variation in aggregation pheromone content of bark beetle Ips typographus. Journal of Chemical Ecology 14, 1737–61.CrossRefGoogle Scholar
  21. Bombosch, S. 1954. Zur Epidemiologie des Buchdruckers (Ips typographus L.). In: Die Grosse Borkenkäferkalamität in Südwestdeutschland 1944-51, G. Wellenstein (Ed.). Ulm: Forstschutzstelle Südwest, Ringingen, Ebner, 239–83.Google Scholar
  22. Botterweg, P.F. 1982. Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size, and fat content. Zeitschrift für Angewandte Entomologie, 94, 466–89.CrossRefGoogle Scholar
  23. Botterweg, P.F. 1983. The effect of attack density on size, fat content and emergence of the spruce bark beetle Ips typographus L. Zeitschrift für Angewandte Entomologie, 96, 47–55.CrossRefGoogle Scholar
  24. Bouhot, L., Lieutier, F., & Debouzie, D. 1988. Spatial and temporal distribution of attacks by Tomicus piniperda L. and Ips sexdentatus Boern. (Col., Scolytidae) on Pinussylvestris. Journal of Applied Entomology, 106, 356–71.Google Scholar
  25. Byers, J.A., & Löfqvist, J. 1989. Flight initiation and survival inthe bark beetle Ips typographus (Coleoptera: Scolytidae) during the spring dispersal. Holartic Ecology, 12, 432–40.Google Scholar
  26. Chararas, C. 1962. Scolytides des Conifères Paris: Paul Lechevalier.Google Scholar
  27. Chararas, C. 1973. Faculté d’adaptation d’ Orthotomicus erosus Woll. á des conifèresautres que ses essences hôtes habituelles. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, D, 276, 555–58.Google Scholar
  28. Chararas, C. 1983. Régime alimentaire et activités osidasiques des insectes xylophages. Bulletin de la Société Zoologique de France,108, 389–97.Google Scholar
  29. Chararas, C., Revolon, C., Feinberg, M., & Ducauze, C. 1982. Preference of certain Scolytidae for different conifers. Journal of chemical Ecology,8, 1093–1109.CrossRefGoogle Scholar
  30. Coulson, R.N. 1979. Population dynamics of bark beetles. Annual Review of Entomology, 24, 417–47.CrossRefGoogle Scholar
  31. De Jong, M.C.M., & Grijpma, P. 1986. Competition between larvae of Ips typographus. Entomologia Experimentalis et Applicata, 41,121–33.CrossRefGoogle Scholar
  32. De Jong, M.C.M., &Saarenmaa, H. 1983. A mechanistic simulation model for the movement and competition of bark beetle larvae (Coleoptera, Scolytidae. Ecological Modelling, 27, 109–38.CrossRefGoogle Scholar
  33. De Jong, M.C.M., &Sabelis, M.W. 1988. How bark beetles avoid interference with squatters: an ESS for colonization by Ips typographus. Oikos, 51,88–96.CrossRefGoogle Scholar
  34. Duelli, P., Studer, M., & Näf, W. 1986. Der Borkenkäferflugauβerhalb des Waldes. Zeitschrift für Angewandte Entomologie, 102,139–48.Google Scholar
  35. Duelli, P., Zahradnik, P., Knizek, M., & Kalinova, B. 1997. Migration in spruce bark beetles (Ips typographus L.) and the efficiency of pheromone traps. Journal of Applied Entomology, 121, 297–303.Google Scholar
  36. Escherich, K. 1923. Die Forstinsekten Mitteleuropas. 2. Käfer Berlin: Paul Parey.Google Scholar
  37. Fernandez Fernandez, M.M., & Pajares Alonso, J.A. 1999. Shoot feeding and overwintering in the lesser pine shoot beetle Tomicus minor (Col., Scolytidae) in north-west Spain. Journal of Applied Entomology, 123, 321–27.CrossRefGoogle Scholar
  38. Fettig, C.J., Fidgen, J., McClellan, Q.C., & Salom, S.M. 2001. Sampling Methods for Forest and Shade Tree Insects of North America. USDA Forest Service FHTET-2001-01.Google Scholar
  39. Forsse, E. 1987. Flight duration in Ips typographus L.: insensitivity to nematode infection. Journal of Applied Entomology, 104, 326–28.CrossRefGoogle Scholar
  40. Forsse, E. 1989. Migration in bark beetles with special reference to thespruce bark beetle Ips typographus. Thesis Sveriges Lantbruksuniversitet, Uppsala.Google Scholar
  41. Forsse, E. 1991. Flight propensity and diapause incidence in fivepopulations of the bark beetle Ips typographus in Scandinavia. Entomologia Experimentalis et Applicata, 61, 53–57.CrossRefGoogle Scholar
  42. Forsse, E., & Solbreck C. 1985. Migration in the bark beetle Ips typographus L.: duration, timing and height of flight. Zeitschrift für Angewandte Entomologie, 100, 47–57.CrossRefGoogle Scholar
  43. Franklin, A.J., & Grégoire, J.C. 1999. Flight behaviour of Ips typographus L. (Col., Scolytidae) in an environment without pheromones. Annals of Forest Science,56, 591–98.Google Scholar
  44. Führer, E. 1977. Studien über intraspezifische Inkompatibilität bei Pityogenes chalcographus L. (Col., Scolytidae). Zeitschrift für Angewandte Entomologie, 83,286–97.CrossRefGoogle Scholar
  45. Führer, E., & Chen, Z.Y. 1979. Zum Einfluβ von Photoperiode und Temperatur auf die Entwicklung des Kupferstechers, Pityogenes chalcographus L. (Col., Scolytidae). Forstwissenschaftliches Centralblatt, 98, 87–91.Google Scholar
  46. Gehrken, U. 1984. Winter survival of an adult bark beetle Ips acuminatus Gyll. Journal of Insect Physiology, 30, 421–29.CrossRefGoogle Scholar
  47. Gehrken, U. 1985. Physiology of diapause in the adult bark beetle, Ips acuminatus Gyll., studied in relation to cold hardiness. Journal of Insect Physiology, 31,909–16.CrossRefGoogle Scholar
  48. Gehrken, U. 1989. Supercooling and thermal hysteresis in the adult bark beetle, Ips acuminatus Gyll. Journal of Insect Physiology, 35, 347–52.CrossRefGoogle Scholar
  49. Gehrken, U. 1992. Inoculative freezing and thermal hysteresis in the adult beetles Ips acuminatus and Rhagium inquisitor. Journal of Insect Physiology,38, 519–24.CrossRefGoogle Scholar
  50. Gehrken, U. 1995. Correlative influence of gut appearance, water content and thermal hysteresis on whole body supercooling point of adult bark beetles,Ips acuminatus. Comparative Biochemistry and Physiology. A: Physiology, 112, 207–14.CrossRefGoogle Scholar
  51. Gilbert, M. 2001. Spatial Ecology of Dendroctonus micans (Kug.) (Coleoptera: Scolytidae). Thesis Université Libre de Bruxelles.Google Scholar
  52. Grégoire, J.C. 1988. The Greater European Spruce Beetle. In: Dynamics of Forest Insect Populations A.A. Berryman (Ed.). New York: Plenum Press, 455–78.Google Scholar
  53. Grégoire, J.C., Braekman, J.C., & Tondeur, A. 1982. Chemical Communication between the Larvae of Dendroctonus micans Kug. (Coleoptera, Scolytidae). In: Les mediateurs chimiques agissant sur le comportement des insectes. Symposium international. Versailles, 16-20 novembre 1981. Paris: Institut National de la Recherche Agronomique, 253–57.Google Scholar
  54. Gries, G. 1985. Zur Frage des Dispersion des Buchdruckers (Ips typographus L). Zeitschriftfür Angewandte Entomologie, 99, 12–20.Google Scholar
  55. Gries, G. 1986. Zur Bedeutung des Reifungsfrasses für die Dispersion des Kupferstechers, Pityogenes chalcographus L., (Coleoptera: Scolytidae). Zeitschrift für Angewandte Zoologie, 73, 267–79.Google Scholar
  56. Grünwald, M. 1986. Ecological segregation of bark beetles (Coleoptera, Scolytidae) of spruce. Journal of Applied Entomology, 101, 176–87.Google Scholar
  57. Hansen, L.O., & Sømme, L. 1994. Cold hardiness of the elm bark beetle Scolytus laevis Chapuis, 1873 (Col., Scolytidae) and its potential as Dutch elm disease vector in the northernmost elm forests of Europe. Journal of Applied Entomology, 117, 444–50.Google Scholar
  58. Helland, I.S., Hoff, J.M., & Anderbrandt, O. 1984. Attraction of bark beetles (Scolytidae) to a pheromone trap. Journal of Chemical Ecology, 10,723–52.CrossRefGoogle Scholar
  59. Jactel, H. 1991. Dispersal and flight behaviour of Ips sexdentatus (Coleoptera: Scolytidae) in pine forest. Annales des Sciences Forestières, 48, 417–28.Google Scholar
  60. Jactel, H. 1993. Individual variability of the flight potential of Ips sexdentatus Boern.(Coleoptera: Scolytidae) in relation to day of emergence, sex, size, and lipid content. The Canadian Entomologist, 125, 919–30.CrossRefGoogle Scholar
  61. Jactel, H., & Lieutier, F. 1987. Effects of attack density on fecundity of the scots pine beetle Ips sexdentatus Boern (Col.; Scolytidae). Zeitschrift fürAngewandte Entomologie, 104, 190–204.Google Scholar
  62. Jakuš, R. 1995. Bark beetle (Col., Scolytidae) communities and host and site factors on tree level in Norway spruce primeval natural forest. Journal of Applied Entomology, 119, 643–51.Google Scholar
  63. Jakuš, R. 1998. Patch level variation on bark beetle attack (Col., Scolytidae) on snapped and uprooted trees in Norway spruce primeval natural forest in endemic condition: effects of host and insolation. Journal of Applied Entomology, 122, 409–21.Google Scholar
  64. Jakuš, R., Grodzki, W., Jezìk, M., & Jachym, M. 2003. Definition of Spatial Patterns of Bark Beetle Ips typographus (L.) Outbreak Spreading in Tatra Mountains (Central Europe), Using GIS. In: Proceedings: Ecology, Survey and Management of Forest Insects, 2002 September 1-5, Krakòw, Poland, M.L. McManus, A.M. Liebhold (Eds). USDA Forest Service General Technical Report NE-311, 25–32.Google Scholar
  65. Janin, J.L., & Lieutier, F. 1988. Existence de fécondations précoces dans le cycle biologique de Tomicus piniperda L. (Coleoptera: Scolytidae) en forêt d’Orléans. Agronomie, 8, 169–72.CrossRefGoogle Scholar
  66. Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society, 77, 293–352.CrossRefGoogle Scholar
  67. Kirkendall, L.R. 1989. Within-harem competition among Ips females, an overlooked component of density-dependent larval mortality. Holarctic Ecology, 12, 477–87.Google Scholar
  68. Kirkendall, L.R. 1990. Sperm is a limiting resource in pseudogamous bark beetle Ips acuminatus (Scolytidae). Oikos, 57, 80–87.CrossRefGoogle Scholar
  69. Klipstein, E.L. 1986. Cytologie und Spermapolyploidie bei Pityogenes chalcographus L. (Col.,Scolytidae). Journal of Applied Entomology, 102, 285–95.CrossRefGoogle Scholar
  70. Koponen, M. 1980. Distribution of Ips amitinus Eichhoff (Coleoptera, Scolytidae) in Finland in 1974-1979. Notulae Entomologicae,60, 223–25.Google Scholar
  71. Krauβe-Opatz, B., Köhler, U., & Schopf, R. 1995. Zum energetischen Status von Ips typographus L. (Col., Scolytidae) während Jungkäferentwicklung, Überwinterung, Dispersion und Eiablage. Journal of Applied Entomology, 119, 185–94.Google Scholar
  72. Långström, B. 1980. Distribution of pine shoot beetle attacks within the crown of Scots pine. Studia Forestalia Suecica, 154, 1–25.Google Scholar
  73. Långström, B. 1983a. Life cycles and shoot feeding of the pine shoot beetles. Studia Forestalia Suecica, 163, 1–29.Google Scholar
  74. Långström, B. 1983b. Within-tree development of Tomicus minor (Hart.) (Col., Scolytidae) in wind-thrown Scots pine. Acta Entomologica Fennica, 42, 42–46.Google Scholar
  75. Långström, B., & Hellqvist, C. 1990. Spatial distribution of crown damage and growth losses caused by recurrent attacks of pine shoot beetles in pine stands surrounding a pulp mill in southern Sweden. Journal of Applied Entomology, 110, 261–69.Google Scholar
  76. Lanne, B.S., Schlyter, F., Byers, J.A., Löfqvist, J., Leufvén, A., Bergström, G., Van Der Pers, J.N.C., Unelius, R., Baeckström, P., & Norin, T. 1987. Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. Journal of Chemical Ecology, 13, 1045–67.CrossRefGoogle Scholar
  77. Lieutier, F. 1975. Humidité et dessèchement en milieu sous-cortical : conséquences pour la faune associée. Annales de Zoologie Ècologie Animale, 7, 171–83.Google Scholar
  78. Lieutier, F. 1982. Les variations pondérales du tissu adipeux et des ovaires, et les variations de longueur des ovocytes, chez Ips sexdentatus Boern. (Coleoptera: Scolytidae); relations avec le parasitisme par les nématodes. Annales de Parasitologie Humaine et Comparée, 57, 407–18.PubMedGoogle Scholar
  79. Lieutier, F. 1983. Variations du volume et de la concentration en protéines et en acides aminés de l’hémolymphe chez les adultes d’Ips sexdentatus Boern. (Coleoptera, Scolytidae). Zeitschrift für Angewandte Entomologie, 95, 447–57.CrossRefGoogle Scholar
  80. Lieutier, F., Vouland, G., & Pettinetti, M. 1997. Test de choix de pins méditerranéens par les Scolytides et autres insectes xylophages en conditions naturelles. Revue Forestière Française, 49, 215–24.Google Scholar
  81. Lobinger, G. von, & Skatulla, U. 1996. Untersuchungen zum Einfluss von Sonnenlicht auf das Schwarmverhalten von Borkenkäfern. Anzeiger für Schadlingskunde Pflanzenschutz Umweltschutz, 69, 183–85.CrossRefGoogle Scholar
  82. Netherer, S. 2003. Modelling of bark beetle development and of site- and stand-related predisposition to Ips typographus (L.) (Coleoptera: Scolytidae). A contribution to risk assessment. Thesis Universität für Bodenkultur Wien.Google Scholar
  83. Nilssen, A.C. 1978. Spatial attack pattern of the bark beetle Tomicus piniperda L. (Col., Scolytidae). Norwegian Journal of Entomology, 25, 171–75.Google Scholar
  84. Nilssen, A.C. 1984. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Annales Entomologici Fennici, 50, 37–42.Google Scholar
  85. Ogibin, B. N. 1973. [In Russian] Effect of settlement density on Ips typographus fecundity. Ecologiya, 5, 66–72.Google Scholar
  86. Otto, L.F., & Schreiber, J. 2001. Spatial patterns of the distribution of trees infected by Ips typographus (L.) (Coleoptera, Scolytidae) in the National Park "Sächsische Schweiz" from 1996 to 2000. Journal of Forest Science, 47, 139–42.Google Scholar
  87. Paynter, Q.E., Anderbrandt, O., & Schlyter, F. 1990. Behavior of male and female spruce bark beetles, Ips typographus, on the bark of host trees during mass attack. Journal of Insect Behavior, 3, 529–43.CrossRefGoogle Scholar
  88. Pignal, M.C., Chararas, C., & Bourgeay-Causse M. 1988. Yeasts from Ips sexdentatus (Scolytidae): enzymatic activity and vitamin excretion. Mycopathologia, 103, 43–48.CrossRefGoogle Scholar
  89. Ratzeburg, J.T.C. 1839. Die Forst-Insekten. 1. Die Käfer. Berlin: Nicolai.Google Scholar
  90. Riedl, H.W. 1973. Aspects of the feeding behavior of Scolytus multistriatus, the primary vector of Dutch Elm disease, and a critical evaluation of present chemical control measures. Dissertation Abstracts International, B, 34, 2678.Google Scholar
  91. Rudinsky, J.A., & Ryker, L.C. 1977. Olfactory and auditory signals mediating behavioral patterns of bark beetles. In: Colloques Internationaux du C.N.R.S. 265. Comportement des insectes et milieu trophique, 195–209.Google Scholar
  92. Saarenmaa, H. 1983. Modeling the spatial pattern and intraspecific competition in Tomicus piniperda (Coleoptera, Scolytidae). Communicationes Instituti Forestalis Fenniae, 118, 1–40.Google Scholar
  93. Saarenmaa, H. 1985. Within-tree population dynamics models for integrated management of Tomicus piniperda (Coleoptera, Scolytidae). Communicationes Instituti Forestalis Fenniae, 128, 1–56.Google Scholar
  94. Sahota, T.S., & Thomson, A.J. 1979. Temperature induced variation in the rates of reproductive processes in Dendroctonus rufipennis (Coleoptera: Scolytidae): a new approach to detecting changes in population quality. The Canadian Entomologist, 111, 1069–78.CrossRefGoogle Scholar
  95. Salonen, K. 1973. On the life cycle, especially on the reproduction biology of Blastophagus piniperda L. (Col., Scolytidae). Acta Forestalia Fennica, 127, 5–72.Google Scholar
  96. Sanders, W. 1983. Untersuchungen über das Verhalten des Kupferstechers Pityogenes chalcographus L. während der Flugphase. Zeitschrift für Angewandte Entomologie, 96, 125–31.CrossRefGoogle Scholar
  97. Sauvard, D. 1989. Capacités de multiplication de Tomicus piniperda L. (Col., Scolytidae). 1. Effets de la densité d’attaque. Journal of Applied Entomology, 108, 164–81.Google Scholar
  98. Sauvard, D. 1993. Reproductive capacity of Tomicus piniperda L. (Col., Scolytidae). 2. Analysis of the various sister broods. Journal of Applied Entomology, 116, 25–38.Google Scholar
  99. Sauvard, D., Lieutier, F., & Lévieux, J. 1987. Répartition spatiale et dispersion de Tomicus piniperda L. (Coleoptera Scolytidae) en forêt d’Orléans. Annales des Sciences Forestières, 44, 417–34.CrossRefGoogle Scholar
  100. Schlyter, F., & Anderbrandt, O. 1993. Competition and niche separation between two bark beetles: existence and mechanisms. Oikos, 68, 437–47.CrossRefGoogle Scholar
  101. Schlyter, F., & Löfqvist, J. 1990. Colonization pattern in the pine shoot beetle, Tomicus piniperda: effects of host declination, structure and presence of conspecifics. Entomologia Experimentalis et Applicata, 54, 163–72.CrossRefGoogle Scholar
  102. Schroeder, L.M., & Lindelöw, Å. 2002. Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agricultural and Forest Entomology, 4,47–56.CrossRefGoogle Scholar
  103. Schroeder, L.M., & Risberg, B. 1989. Establishment of a new brood in Tomicus piniperda (L.) (Col., Scolytidae) after a second hibernation. Journal of Applied Entomology, 108, 27–34.Google Scholar
  104. Schwenke, W. 1974. Die Forstschädlinge Europas. 2. Käfer Hamburg: Paul Parey.Google Scholar
  105. Storer, A.J., Wainhouse, D., & Speight, M.R. 1997. The effect of larval aggregation behaviour on larval growth of the spruce bark beetle Dendroctonus micans. Ecological Entomology, 22, 109–15.CrossRefGoogle Scholar
  106. Thalenhorst, W. 1958. Grundzüge der Populationsdynamik des groβen Fichtenborkenkäfers Ips typographus L. Schriftenreihe der Forstlichen Fakultät der Universität Göttingen, 21, 1–126.Google Scholar
  107. Vouland, G., & Schvester, D. 1994. Bionomie et développement de Dendroctonus micans Kug. (Col., Scolytidae) dans le Massif central. Annales des Sciences Forestières, 51, 505–19.Google Scholar
  108. Wainhouse, D., & Beech-Garwood, P. 1994. Growth and survival of Dendroctonus micans on six species of conifer. Journal of Applied Entomology, 117, 393–99.Google Scholar
  109. Walker, C., & Ross, R. 1975. A comparison of maturation feeding of the elm bark beetles Scolytus scolytus (F.) and S. multistriatus (Marsh.) on English elm (Ulmus procera Salisb.) and six other elm taxa. Plant Pathology, 24, 187–91.CrossRefGoogle Scholar
  110. Wellington, W.G. 1977. Returning the insect to insect ecology: some consequences for pest management. Environmental Entomology, 6, 1–8.Google Scholar
  111. Wermelinger, B. 2000. Wie viele Borkenkäfer überleben den Winter? Bündnerwald, 53, 67–68.Google Scholar
  112. Wichmann, L., & Ravn, H.P. 2001. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecology and Management, 148, 31–39.CrossRefGoogle Scholar
  113. Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology, 27, 411–46.CrossRefGoogle Scholar
  114. Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6.Google Scholar
  115. Zolubas, P., & Byers, J.A. 1995. Recapture of dispersing bark beetles, Ips typographus L. (Col., Scolytidae) in pheromone-baited traps: regression models. Journal of Applied Entomology, 119, 285–89.Google Scholar
  116. Zumr, V. 1985. [In Czech] Communities of beetles (Coleoptera) in the feeding sites of bark-beetles (Scolytidae) on Norway spruce (Picea excelsa Link.) in southern Bohemia. Sbornik Jihoceskeho Muzea V Ceskych Budejovicich Prirodni Vedy, 25, 45–48.Google Scholar
  117. Zumr, V. 1992. Dispersal of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae) in spruce woods. Journal of Applied Entomology, 114, 348–52.Google Scholar
  118. Zumr, V., & Soldàn, T. 1981. Reproductive cycle of Ips typographus I amitinus and Pityogenes chalcographus (Coleoptera, Scolytidae). Acta Entomologica Bohemoslovaca, 78, 280–89.Google Scholar
  119. Zumr, V., Nemec, V., & Stary, P. 1985. Seasonal changes in the nutrient content in the bodies of Ips typographus L. (Col., Scolytidae). Zeitschrift für Angewandte Entomologie, 100, 464–68.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Sauvard
    • 1
  1. 1.Institut National de la Recherche Agronomiqueavenue de la Pomme de Pin, B.P. 20619France

Personalised recommendations