Mechanisms Controlling the Air-Sea Flux of CO2 in the North Atlantic

  • Mick Follows
  • Richard G. Williams
Part of the NATO Science Series book series (NAIV, volume 40)


The air-sea flux of carbon is controlled by the disequilibrium in partial pressure of carbon dioxide between the atmosphere and surface ocean. This disequilibrium is a consequence of the interactions of physical, chemical and biological processes in the ocean and, today, includes a response to the anthropogenic increase of atmospheric pCO 2. Fig. 1 illustrates the annual mean airsea flux of carbon, F, estimated from a knowledge of the atmospheric partial pressure, pCO 2 at and compilation of surface pCO 2 observations by Takahashi et al. (1999). The air-sea flux of carbon is determined by
$$ F = - {K_g}{K_0}(pC{O_2} - pCO_2^{at} $$
where K 0 is the solubility of CO 2 at local temperature and salinity. K g is the air-sea gas transfer coefficient, which is dependent on local environmental conditions and is usually parameterized as a function of wind speed, sea-surface temperature and sea-surface salinity (Wanninkhof, 1992). The major global scale features in Fig. 1 are the outgassing of CO 2 from the tropical oceans, and the influx at mid and high latitudes. In this chapter we focus on understanding what sets the basin wide, and regional patterns of air-sea carbon flux in the North Atlantic basin. While we focus on the North Atlantic, some of the concepts and discussions are also relevent to other regions of the ocean.


Mixed Layer Gulf Stream Subtropical Gyre Cyclonic Eddy Subpolar Gyre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. and I. Totterdell (2003) Modelling the response of the oceans biological pump to climate change. This volume.Google Scholar
  2. Andersson, L.G. and A. Olsen (2002) Air-sea flux of anthropogenic carbon dioxide in the North Atlantic Geophys. Res. Lett., 29(19), 10.1029/2002GL014820.Google Scholar
  3. Bates, N.R. (2000) Interannual Variability of Oceanic CO2 and Biogeochemical Properties in the Western North Atlantic Subtropical Gyre Deep-Sea Research II, 48, 1507–1528.CrossRefGoogle Scholar
  4. Bates N.R., A. C. Pequignet, R. J. Johnson and N. Gruber (2002) A Variable Sink for Atmospheric CO 2 in Subtropical Mode Water of the North Atlantic Ocean, Nature, 420, 489–493.CrossRefGoogle Scholar
  5. Broecker, W. S., Peng, T- H., (1974). Gas exchange rates between air and sea. Tellus, 26, 21–35.CrossRefGoogle Scholar
  6. Brostrom, G. (1997) Air-sea flux of CO 2 — can we shortcut the annual cycle? A Norwegian Sea case study. Phys. Chem. Earth, 21, 517–522.Google Scholar
  7. Brostrom, G. (2000) The role of annual cycles for the air-sea exchange of CO 2. Marine Chem., 72, 151–169.CrossRefGoogle Scholar
  8. Cipollini, P., D. Cromwell, P.G. Challenor and S. Raffaglio, (2001). Rossby waves detected in global ocean colour data. Geophys. Res. Lett., 28, 323–326.CrossRefGoogle Scholar
  9. Conkright, M.E., R.A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens, J.I. Antonov (2002) World Ocean Atlas 2001: Objective analyses, Data Statistics and Figures. CD-ROM Documentation. National Oceanographic Data Center, Silver Spring, Maryland.Google Scholar
  10. Dickson, R., J. Lazier, J. Meinke, P. Rhines and J. Swift (1996) Long term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–295.CrossRefGoogle Scholar
  11. Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas, and M. Landry (1997) The carbon pump in the Subtropical Pacific Ocean: Implications for the Global Carbon Cycle, Nature, 389, 951–954.Google Scholar
  12. Follows, M. J., T Ito and J. Marotzke (2002) The ocean’s subtropical gyres and Atmospheric pCO2. Global Biogeochem. Cycles, 16, 1113, doi:10.1029/2001GB001786.CrossRefGoogle Scholar
  13. Follows, M.J., Williams, R.G., Marshall, J.C., (1996). The solubility pump of carbon in the subtropical gyre of the North Atlantic. J. Mar. Res., 54, 605–630.CrossRefGoogle Scholar
  14. Gruber, N., (1998). Anthropogenic CO 2 in the Atlantic Ocean. Glob. Biogeochem. Cycles, 12, 165–191.CrossRefGoogle Scholar
  15. Gruber, N., N.Bates, and C.D. Keeling (2002) Interannual variability in the North Atlantic Ocean carbon sink, Science, 298, 2374–2378.CrossRefGoogle Scholar
  16. Hanawa, K. and L.D. Talley (2001) Mode Waters. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Eds. G. Siedler, J. Church and J. Gould, 373–387.CrossRefGoogle Scholar
  17. Hansell, D.A. and C.A. Carlson (1998) Deep ocean gradients in dissolved carbon concentrations. Nature, 395, 263–266.CrossRefGoogle Scholar
  18. Holfort, J., K.M. Johnson, B. Schneider, G. Siedler and D.W.R. Wallace, (1998) Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean. Glob. Biogeochem. Cycles, 12, 479–499.CrossRefGoogle Scholar
  19. Hurrell, J.W., Y. Kushnir, M. Visbeck, and G. Ottersen (2003) An Overview of the North Atlantic Oscillation. in The North Atlantic Oscillation: Climate Significance and Environmental Impact J.W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, Eds. Geophysical Monograph Series, 134, pp. 1–35.CrossRefGoogle Scholar
  20. Ito, T., and M.J. Follows (2003) Upper ocean control of the solubility pump of CO 2. J. Marine Res., accepted for publication.Google Scholar
  21. Josey, S.A., E.C. Kent and P.K. Taylor, (1998). The Southampton Oceanography Centre (SOC) Ocean-Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre, Reports 6, 3Opp.Google Scholar
  22. Lee, M.-M. and R.G. Williams, (2000). The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58, 895–917.CrossRefGoogle Scholar
  23. Lefevre, N, A.J. Watson, A. Olsen, A. Rios, F. Perez, T. Johannessen, R. Bellerby, I. Skjelvan, (2003). A decrease in the sink for atmospheric CO 2 in the North Atlantic, To be submitted to Geophs. Res. Lett. Google Scholar
  24. Levy, M., L. Memery and G. Madec, (1998). The onset of a bloom after deep winter convection in the northwest Mediterranean sea: mesoscale process study with a primitive equation model. J. Mar. Sys., 16, 7–21.CrossRefGoogle Scholar
  25. Levy, M., P. Klein and A-M. Treguier, (2001). Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535–565.CrossRefGoogle Scholar
  26. Lewis, M.R. (1992) Satellite ocean color observations of global biogeochemical cycles. In Primary Productivity and Biogeochemical Cycles in the Sea. Ed. P.G. Falkowski and A.D. Woodhead, Plenum Press, New York.Google Scholar
  27. Lundberg, L. and P.M. Haugan (1996) A Nordic Seas — Arctic Ocean Carbon Budget from Volume Flows and Inorganic Carbon Data. Global Biogeochem. Cycles, 10, 493–510.CrossRefGoogle Scholar
  28. Mahadevan, A. and D. Archer, (2000). Modelling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res., 105, 1209–1225.CrossRefGoogle Scholar
  29. Mahadevan, A., M. Levy, and L. Memery (2002) Mesoscale variability of sea surface pCO2: What does it respond to? Global Biogeochem. Cycles, submitted.Google Scholar
  30. Marshall, D., (1997). Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201–222.CrossRefGoogle Scholar
  31. Marshall, J.C., A.J.G. Nurser and R.G. Williams, (1993). Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr, 23, 1315–1329.CrossRefGoogle Scholar
  32. Marshall, J. and E Schott, (1999). Open-ocean convection: observations, theory and models. Rev. Geophysics, 37, 1, 1–64.CrossRefGoogle Scholar
  33. McGillicuddy, D.J. and A.R. Robinson, (1997). Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44, 1427–1449.CrossRefGoogle Scholar
  34. McGillicuddy, D.J., A.R. Robinson, D.A. Siegel, H.W. Jannasch, R. Johnson, T. Dickeys, J. McNeil, A.F. Michaels and A.H. Knap, (1998), New evidence for the impact of mesoscale eddies on biogeochemical cycling in the Sargasso Sea. Nature, 394, 263–266.CrossRefGoogle Scholar
  35. McKinley, G.A. (2002) Interannual variability of the air-sea fluxes of carbon and oxygen. Ph.D. thesis. Massachusetts Institute of Technology.Google Scholar
  36. McKinley, G.A., M.J. Follows and J.C. Marshall (2003) Mechanisms of interannual variability of the air-sea flux of CO 2. Submitted to Global Biogeochem. Cycles. Google Scholar
  37. Murray, J. (2003) Ocean carbonate chemistry. This volume.Google Scholar
  38. Nurser, A.J.G. and J.W. Zhang, (2000), Eddy-induced mixed-layer shallowing and mixed-layer/ thermocline exchange. J. Geophys. Res., 105, 21851–21868.CrossRefGoogle Scholar
  39. Orr, J. (2002) Global Ocean Storage of Anthropogenic CO 2: Final Report. EC Environment and Climate Program.Google Scholar
  40. Oschlies, A., (2002) Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 16, 1106, doi :10.1029/2001 GB 001830.CrossRefGoogle Scholar
  41. Sabine, C.L., R.M. Key, K. Johnson, F.J. Millero, J. Sarmiento, D. Wallace and C. Winn (1999) Anthropogenic CO2 inventory of the Indian Ocean, Global Biogeochem. Cycles, 13, 179–198.CrossRefGoogle Scholar
  42. Sarmiento, J.L., Murnane, R., Le Quere, C., (1995). Air-sea CO 2 transfer and the carbon budget of the North Atlantic. Phil. Trans. Roy. Soc. Lond., B348, 211–219.CrossRefGoogle Scholar
  43. Sarmiento, J.L., N. Gruber, M.A. Brzezinski, and J.P. Dunne (2003) High latitude controls of the global nutricline and low latitude biological productivity. Nature, in press.Google Scholar
  44. Sathyendranath, S., R.S.A. Longhurst, C.M. Caverhill, and T. Platt, (1995). Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res. I., 42, 1773–1802.Google Scholar
  45. Schmitz, W.J. and M.S. McCartney, (1993). On the North Atlantic circulation. Rev. Geophysics., 31, 29–49.CrossRefGoogle Scholar
  46. Stumm, W. and J. J. Morgan (1996) Aquatic Chemistry. Third Edition. John Wiley and Sons., N.Y., 1022pp.Google Scholar
  47. Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C., 1993. Seasonal variation of CO 2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7, 843–878.CrossRefGoogle Scholar
  48. Takahashi, T., Wanninkhof, R.H., Feely, R.A., Weiss, R.F., Chipman, D.W., Bates, N., Olafsson, J., Sabine, C., Sutherland, S.C., (1999). Net sea-air CO 2 flux over the global ocean: An improved estimate based on the sea-air pCO 2 difference. Proceedings of the 2nd International Symposium CO 2 in the Oceans, Ed. Y. Nojiri, Center for Global Environmental Research, CGER-1037-’ 99, Tsukuba, Japan, 9–15.Google Scholar
  49. Uz, B.M, J.A. Yoder and V. Osychny, (2001). Pumping of nutrients to ocean surface waters by the action of propagating planetary waves, Nature, 409, 597–600.CrossRefGoogle Scholar
  50. Volk T., and M.I. Hoffert (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO 2 changes. Geophys. Monogr., 32, 99–110.Google Scholar
  51. Wallace, D.W.R., (2001). Storage and transport of excess CO 2 in the oceans: the JGOFS/WOCE Global CO 2 survey. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Eds. G. Siedler, J. Church and J. Gould, 489–521.CrossRefGoogle Scholar
  52. Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–7382.CrossRefGoogle Scholar
  53. Watson, A.J., P.D. Nightingale and D.J. Cooper, (1995) Modelling atmosphere-ocean CO2 transfer. Phil. Trans. Roy. Soc. Lond., B348, 125–132.CrossRefGoogle Scholar
  54. Williams, R.G., (2001). Ocean Subduction. In Encyclopedia of Ocean Sciences, Eds. J.H. Steele, K.K. Turekian and S. A. Thorpe, Academic Press, 1982–1992.CrossRefGoogle Scholar
  55. Williams R.G. and M.J. Follows, (2003). Physical transport of nutrients and the maintenance of biological production. In Ocean Biogeochemistry: a JGOFS synthesis. Ed. M. Fasham, Springer, pp. 19–51.CrossRefGoogle Scholar
  56. Williams, R.G., McLaren, A.J., Follows, M.J., (2000). Estimating the convective supply of nitrate and implied variability in export production over the North Atlantic. Global Biogeochem. Cycles, 14, 1299–1313.CrossRefGoogle Scholar
  57. Xu, Y-F. (1990) A Study of the Biogeochemical Cycle of CO 2 in the Ocean Using a Parcel Model. Ph.D. thesis. 160 pp. University of East Anglia, Norwich, U.K.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Mick Follows
    • 1
  • Richard G. Williams
    • 2
  1. 1.Program in Atmospheres, Oceans and Climate, Department of Earth Atmosphere and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Oceanography Laboratories, Department of Earth and Ocean SciencesUniversity of LiverpoolLiverpoolEngland

Personalised recommendations