The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations

  • Nicolas Gruber
Part of the NATO Science Series book series (NAIV, volume 40)


The bioavailability of nutrients represents one of the most important factors controlling the strength of the biological carbon pump and ultimately the impact of ocean biology on atmospheric CO2. Among those nutrients, the macro-nutrients nitrate (NO 2 - ) and phosphate (PO 4 -3 ) play a particularly important role in limiting biological productivity as evidenced by their often near complete exhaustion in surface waters. As near surface NO 2 - concentrations are generally somewhat lower than those of PO 4 -3 relative to the demand by phytoplankton, biological oceanographers have argued historically that NO 2 - rather than PO 4 -3 is the primary macro-nutrient controlling phytoplankton productivity[Smith, 1984; Codispoti, 1989; Tyrrell, 1999] . Geologists, in contrast, regarded PO 4 -3 as the primary controlling macronutrient[Codispoti, 1989]. They argued that while NO 2 - may indeed be the limiting factor at any given location and time, PO 4 -3 is truly the limiting factor on geological time-scales, because the biologically mediated fixation of the much more abundant dinitrogen gas (N2) into organic nitrogen is alleviating the scarcity of bioavailable nitrogen (Figure 1). Phosphate on the other hand, does not have such a biologically mediated source (Figure 1). It is therefore the geologically controlled balance between the riverine (and atmospheric) input of PO 4 -3 and its burial on the sea-floor that ultimately controls marine biological productivity. Tyrrell [ 1999] provided a synthesis of these two views by identifying NO 2 - as the proximate nutrient, while giving PO 4 -3 the role of being the ultimate nutrient.


Southern Ocean Organic Nitrogen Dissolve Organic Nitrogen Glacial Period Isotopic Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altabet, M. A., Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean, Deep Sea Res., 35(4), 535–554, 1988.Google Scholar
  2. Altabet, M. A., W. G. Deuser, S. Honjo, and C. Stienen, Seasonal and depth-related changes in the source of sinking particles in the North Atlantic, Nature, 354, 136–139, 1991.Google Scholar
  3. Altabet, M. A., and R. Francois, Sedimentary nitrogen isotopic ratio as a recorder for surface nitrate utilization, Global Biogeochem. Cycles, 8(1), 103–116, 1994.Google Scholar
  4. Altabet, M. A., R. Francois, D. W. Murray, and W. L. Prell, Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 373, 506–509, 1995.Google Scholar
  5. Altabet, M. A., M. J. Higginson, and D. W. Murray, The effect of millenial-scale changes in Arabian Sea denitrification on atmospheric CO2, Nature, 415, 159–162, 2002.Google Scholar
  6. Anderson, T. R., and P. Pondaven, Non-redfield carbon and nitrogen cycling in the Sargasso Sea: pelagic imbalances and export flux, Deep Sea Res. I, 50, 573–591, 2003.Google Scholar
  7. Archer, D. E., G. Eshel, A. Winguth, and W. Broecker, Atmospheric CO2 sensitivity to the biological pump in the ocean, Global Biogeochem. Cycles, 14, 1219–1230, 2000.Google Scholar
  8. Archer, D. E., A. Winguth, D. Lea, and N. Mahowald, What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38(2), 159–189, 2000.Google Scholar
  9. Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of poc with ballast minerals, Deep Sea Res. II, 49, 219–236, 2002.Google Scholar
  10. Bard, E., B. Hamelin, M. Arnold, L. Motaggioni, G. Cabioch, G. Faure, and F. Rougerie, Deglacial sea-level record from tahiti corals and the timing of global meltwater discharge, Nature, 382, 241–244, 1996.Google Scholar
  11. Bates, N. R., A. F. Michaels, and A. H. Knap, Seasonal and interannual variability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site, Deep Sea Res. II, 43(2–3), 347–383, 1996.Google Scholar
  12. Berger, W. H., Planktonic foraminifera: Selective solution and the lysocline, Marine Geology, 8, 111–138, 1970.Google Scholar
  13. Betrand, P., T. F. Pedersen, P. Martinez, S. Calvert, and G. Shimmicld, Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes, Global Biogeochem. Cycles, 14(1), 341–355, 2000.Google Scholar
  14. Blunier, T., B. Barnett, M. L. Bender, and M. B. Hendricks, Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements, Global Biogeochem. Cycles, 16(3), 3.1–3.15, doi:10.1029/GB001460, 2002.Google Scholar
  15. Boyd, P. W., A. J. Watson, C. S. Law, E. R. Abraham, T. Trull, R. Murdoch, D. C. E. Bakker, A. R. Bowie, K. O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. Laroche, M. Liddicoat, R. Ling, M. T. Maldonado, R. M. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite, and J. Zeldis, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695–702, 2000.Google Scholar
  16. Brandes, J. A., and A. H. Devol, A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling, Global Biogeochem. Cycles, 16(4), 2 doi: 10.1029/2001GB001856, 2002.Google Scholar
  17. Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A. Naqvi, Isotopic cornposition of nitrate in the central Arabian sea and eastern tropical pacific: A tracer of mixing and nitrogen cycles, Limnol. Oceanogr., 43(7), 1680–1689, 1998.Google Scholar
  18. Brandhorst, W., Nitrification and denitrification in the eastern tropical North Pacific, J. Cons. Explor. mer, 25, 3–20, 1959.Google Scholar
  19. Broecker, W. S., Paleocean circulation during the last deglaciation: a bipolar seesaw?, Paleoceanogr., 13(2), 119–121, 1998.Google Scholar
  20. Broecker, W. S., and G. M. Henderson, The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes, Paleoceanogr., 13(4), 352–364, 1998.Google Scholar
  21. Broecker, W. S., J. Lynch-Stieglitz, D. Archer, M. Hofmann, E. Maier-Reimer, O. Marchal, T. E Stocker, and N. Gruber, How strong is the Harvardton-Bear constraint?, Global Biogeochem. Cycles, 13(4), 817–820, 1999.Google Scholar
  22. Broecker, W. S., and T. H. Peng, Greenhouse Puzzles, 2nd edition, Eldigio Press, Lamont Doherty Earth Observatory of Columbia University, Palisades, NY, 1998.Google Scholar
  23. Brzezinski, M. A., J. L. Sarmiento, K. Matsumoto, C. J. Pride, D. M. Sigman, N. Gruber, G. H. Rau, and K. H. Coale, A switch from Si(OH)4 to NO depletion in the glacial Southern Ocean, Geophys. Res. Lett., 29(12), 5.1 — 5.4, doi: 10.1029/2001GL014349, 2002.Google Scholar
  24. Burkill, P. H., R. F. C. Mantoura, and N. J. P. Owens, Biogeochemical cycling in the northwestern Indian Ocean: a brief overview, Deep Sea Res. II, 40(3), 643–649, 1993.Google Scholar
  25. Caillon, N., J. P. Severinghaus, J. Jouzel, J.-M. Barnola, J. Kang, and V. Y. Lipenkov, Timing of atmospheric CO2 and Antarctic temperature changes across termination iii, Science, 299, 1728–1731, 2003.Google Scholar
  26. Capone, D. G., Marine nitrogen fixation: what’s the fuss?, Current Opinion in Microbiology, 4, 341–348, 2001.Google Scholar
  27. Capone, D. G., and E. J. Carpenter, Nitrogen fixation in the marine environment, Science, 217, 1140–1142, 1982.Google Scholar
  28. Capone, D. G., J. P. Zehr, H. W. Paerl, B. Bergman, and E. J. Carpenter, Trichodesmium, a globally significant marine cyanobacterium, Science, 276, 1221–1229, 1997.Google Scholar
  29. Carpenter, E., and C. Price, Nitrogen fixation, distribution, and production of oscillatoria (trichodesmium) spp. in the western Sargasso and Caribbean Seas, Limnol. Oceanogr, 22, 60–72, 1977.Google Scholar
  30. Carpenter, E. J., Nitrogen fixation by marine Oscillatoria (trichodesmium) in the world’s oceans, in Nitrogen in the marine environment, edited by E. J. Carpenter and D. G. Capone, pp. 65–103, Academic Press, San Diego, Calif., 1983.Google Scholar
  31. Carpenter, E. J., and D. G. Capone, Nitrogen fixation in Trichodesmium blooms, in Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, edited by E. J. Carpenter, pp. 211–217, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  32. Carpenter, E. J., J. P. Montoya, J. Burns, M. R. Mulholland, A. Subramaniam, and D. G. Capone, Extensive bloom of a n2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean, Mar. Ecol. Progr. Ser., 185, 273–283, 1999.Google Scholar
  33. Carpenter, E. J., and K. Romans, Major role of the cyanobacterium trichodesmium in nutrient cycling in the North Atlantic Ocean, Science, 254, 1356–1358, 1991.Google Scholar
  34. Catubig, N. R., D. E. Archer, R. Francois, P. deMenocal, W. Howard, and E.-F. Yu, Global deepsea burial rate of calcium carbonate during the last glacial maximum, Paleoceanogr., 13(3), 298–310, 1998.Google Scholar
  35. Christensen, J. P., J. W. Murray, A. H. Devol, and L. A. Codispoti, Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget, Global Biogeochem. Cycles, 1(2), 97–116, 1987.Google Scholar
  36. Cline, J. D., and I. R. Kaplan, Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean, Mar. Chem., 3, 271–299, 1975.Google Scholar
  37. Cline, J. D., and F. A. Richards, Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific ocean, Limnol. Oceanogr, 17(6), 885–900, 1972.Google Scholar
  38. Codispoti, L., J. Wlkins, T. Yoshinari, G. Friederich, C. Sakamoto, and T. Packard, On the nitrous oxide flux from productive regions that contain low oxygen waters, in Oceanography of the Indian Ocean, edited by B. Desai, pp. 271–284, Oxford and IBH Publishing Co., New Delhi, India, 1992.Google Scholar
  39. Codispoti, L. A., Phosphorus vs. nitrogen limitation of new and export production, in Productivity of the Ocean: Present and Past, edited by W. H. Berger, V. S. Smetacek, and G. Wefer, pp. 377–394, John Wiley & Sons, New York, 1989.Google Scholar
  40. Codispoti, L. A., J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. Paerl, and T. Yoshinari, The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar, 65(Suppl. 2), 85–105, 2001.Google Scholar
  41. Codispoti, L. A., G. E. Friederich, T. T. Packared, H. E. Glover, P. J. Kelly, R. W. Spinrad, R. T. Barber, J. W. Elkins, B. B. Ward, F. Lipschultz, and N. Lostaunau, High nitrite levels off Northern Peru: A signal of instability in the marine denitrification rate, Science, 233, 1200–1202, 1986.Google Scholar
  42. Codispoti, L. A., and T. T. Packard, Denitrification rates in the eastern tropical South Pacific, J. Mar. Res., 38(3), 453–477, 1980.Google Scholar
  43. Codispoti, L. A., and F. A. Richards, An analysis of the horizontal regime of denitrification in the eastern tropical North Pacific, Limnol. Oceanogr., 21(3), 379–388, 1976.Google Scholar
  44. Cohen, Y., and L. Gordon, Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production, Deep Sea Res., 25, 509–524, 1978.Google Scholar
  45. Cohen, Y., and L. Gordon, Nitrous oxide production in the ocean, J. Geophys. Res., 84, 347–353, 1979.Google Scholar
  46. Cornell, S., A. Rendell, and T. Jickells, Atmospheric inputs of dissolved organic nitrogen to the oceans, Nature, 376, 243–246, 1995.Google Scholar
  47. Craig, H., and T. Hayward, Oxygen supersaturation in the ocean : Biological versus physical contributions, Science, 235, 199–202, 1987.Google Scholar
  48. Crutzen, P. J., and C. Bruhl, A model study of atmospheric temperatures and the concentration of ozone, hydroxyl, and some other photochemical active gases during the glacial, the preindustrial holocene and the present, Geophys. Res. Lett., 20(11), 1047–1050, 1993.Google Scholar
  49. Cutler, K. B., R. L. Edwards, R. W. Taylor, H. Cheng, J. Adkins, C. D. Gallup, P. M. Cutler, G. S. Burr, and A. L. Bloom, Rapid sea-level fall and deep-ocean temperature change since the last interglacial period, Earth Planet. Sci. Lett., 206, 253–271, 2003.Google Scholar
  50. Dalsgaard, T., D. E. Canfield, J. Petersen, B. Thamdrup, and J. A. Gonzalez, N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica, Nature, 422, 606–608, 2003.Google Scholar
  51. Delaney, M. L., Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle, Global Biogeochem. Cycles, 12(4), 563–572, 1998.Google Scholar
  52. Deutsch, C., D. M. Sigman, R. C. Thunell, A. N. Meckler, and G. H. Haug, Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget, Paleoceanvgr., submitted, 2003.Google Scholar
  53. Deutsch, C. D., N. Gruber, R. M. Key, A. Ganachaud, and J. L. Sarmiento, Denitrification and N2 fixation in the Pacific Ocean, Global Biogeochem. Cycles, 15(2), 483–506, 2001.Google Scholar
  54. Devol, A. H., Direct measurements of nitrogen gas fluxes from continental shelf sediments, Nature, 349, 319–321, 1991.Google Scholar
  55. Devol, A. H., Getting cool with nitrogen, Nature, 415, 131–132, 2002.Google Scholar
  56. Duce, R. A., P. S. Liss, J. T. Merrill, E. L. Atlas, P. Buat-Menard, B. B. Hicks, J. M. Miller, J. M. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai, R. Wollast, and M. Zhou, The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5(3), 193–259, 1991.Google Scholar
  57. Dupoy, C., J. Neveux, A. Subramaniam, M. R. Mullholland, J. P. Montoya, L. Campbell, E. J. Carpenter, and D. G. Capone, Satellite captures trichodesmium blooms in the southwestern tropical Pacific, Eos Trans. AGU, 81(1), 15–16, 2000.Google Scholar
  58. Ehhalt, D., M. Prather, F. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley, and M. Wang, Atmospheric chemistry and greenhouse gases, in Climate Change: The Scientific Basis, Chapter 4, pp. 241–287, Cambridge University Press, Cambridge, 2001.Google Scholar
  59. Elkins, J., S. C. Wofsy, M. B. McElroy, C. E. Kolb, and W. A. Kaplan, Aquatic sources and sinks for nitrous oxide, Nature, 275, 602–606, 1978.Google Scholar
  60. Emerson, S., P. Quay, C. Stump, D. Wilbur, and M. Knox, O2, Ar, N2 and 222Rn in surface waters of the subarctic ocean: Net biological O2 production, Global Biogeochem. Cycles, 5(1), 49–69, 1991.Google Scholar
  61. Emmer, E., and R. C. Thunell, Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years, Paleoceanogr, 15(4), 377–387, 2000.Google Scholar
  62. Falkowski, P. G., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean, Nature, 387, 272–275, 1997.Google Scholar
  63. Falkowski, P. G., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, and W. Steffen, Integrated understanding of the global carbon cycle: A test of our knowledge, Science, 290, 291–296, 2000.Google Scholar
  64. Flückiger, J., A. Dallenbach, T. Blunier, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, Variations in atmospheric N2O concentration during abrupt climate changes, Science, 285, 227–230, 1999.Google Scholar
  65. Flückiger, J., E. Monnin, B. Stauffer, J. Schwander, T. F. Stocker, J. C. D. Raynaud, and J.-M. Barnola, High-resolution holocene N2O ice core record and its relationship with CH4 and CO2, Global Biogeochem. Cycles, 16(1),2 doi: 10.29/2001GB001417, 2002.Google Scholar
  66. Follows, M. J., T. Ito, and J. Marotzke, The wind-driven, subtropical gyres and the solubility pump of CO2, Global Biogeochem. Cycles, 16(4), 1113, doi: 10.1029/2001GB001786, 2002.Google Scholar
  67. Fuhrman, J. A., and D. G. Capone, Nifty nanoplankton, Nature, 412, 593–594, 2001.Google Scholar
  68. Fung, I. Y., S. K. Meyn, I. Tegen, S. C. Doney, J. G. John, and J. K. B. Bishop, Iron supply and demand in the upper ocean, Global Biogeochem. Cycles, 14, 281–295, 2000.Google Scholar
  69. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, and R. Francois, Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories, Nature, 415, 156–159, 2002.Google Scholar
  70. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, G. W. McNeil, and M. R. Fontugne, Glacialinterglacial variability in denitrification in the world’s ocean: Causes and consequences, Paleoceanogr., 15(4), 301–376, 2000.Google Scholar
  71. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, and J. W. Murray, Large changes in oceanic nutrient inventories from glacial to interglacial periods, Nature, 376, 755–758, 1995.Google Scholar
  72. Giraud, X., P. Bertrand, V. Garcon, and I. Dadou, Interpretation of the nitrogen isotopic signal variations in the Mauretanian upwelling with a 2D physical-biogeochemical model, Global Biogeochem. Cycles, 17(2), 28.1 — 18.19, 1059: doi:10.1029/2002GB001951, 2003.Google Scholar
  73. Goldman, J. C., Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, in Primary productivity in the sea, edited by P. G. Falkowksi, pp. 179–194, Plenum Press, New York, 1980.Google Scholar
  74. Goldman, J. C., J. J. McCarthy, and D. G. Peavey, Growth rate influence on the chemical cornposition of phytoplankton in oceanic waters, Nature, 279, 210–215, 1979.Google Scholar
  75. Goldstein, B., F. Joos, and T. F. Stocker, A modeling study of oceannic nitrous oxide during the Younger Dryas, Geophys. Res. Lett., 30(2), 64.1 — 64.4, 1092, doi: 10.1029/2002GL016418, 2003.Google Scholar
  76. Goreau, T., W. Kaplan, S. Wofsy, M. McElroy, F. Valois, and S. Watson, Production of not and n2o by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40, 526–532, 1980.Google Scholar
  77. Gruber, N., C. D. Keeling, and T. F. Stocker, Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea, Deep Sea Res. I, 45, 673–717, 1998.Google Scholar
  78. Gruber, N., and J. L. Sarmiento, Global patterns of marine nitrogen fixation and denitrification, Global Biogeochem. Cycles, 11(2), 235–266, 1997.Google Scholar
  79. Gruber, N., and J. L. Sarmiento, Biogeochemical/physical interactions in elemental cycles, in THE SEA: Biological-Physical Interactions in the Oceans, edited by A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, vol. 12, pp. 337–399, John Wiley and Sons„ New York, 2002.Google Scholar
  80. Hammond, D. E., P. Giordani, W. M. Berelson, and R. Poletti, Diagenesis of carbon and nutrients and benthic exchange in sediments of the Northern Adriatic Sea, Mar. Chem., 66(1–2), 53–79, 1999.Google Scholar
  81. Hansell, D. A., N. R. Bates, and D. B. Olson, Excess nitrate and nitrogen fixation in the Subtropical North Atlantic, Mar. Chem., submitted, 2003.Google Scholar
  82. Hansell, D. A., and R. A. Feely, Atmospheric intertropical convergence impacts surface ocean carbon and nitrogen biogeochemistry in the westérn tropical Pacific, Geophys. Res. Lett., 27(7), 1013–1016, 2000.Google Scholar
  83. Hattori, A., Denitrification and dissimilatory nitrate reduction, in Nitrogen in the Marine Environment, edited by E. J. Carpenter and D. G. Capone, pp. 191–232, Academic Press, San Diego, Calif., 1983.Google Scholar
  84. Haug, G. H., T. E Pedersen, D. Sigman, S. Calvert, and B. Nielsen, Glacial/interglacial variations in productivity and nitrogen fixation in the Cariaco basin during the last 550 ka, Paleoceanogr, 13(5), 427–432, 1998.Google Scholar
  85. Hood, R. H., A. F. Michaels, and D. G. Capone, The enigma of marine nitrogen fixation: answers on the horizon, Eos Trans. AGU, 81(13), 133,138, 2000.Google Scholar
  86. Hood, R. H., A. F. Michaels, and D. G. Capone, The enigma of marine nitrogen fixation: answers on the horizon, Eos Trans. AGU, 81(13), 139, 2000.Google Scholar
  87. Howell, E. A., S. C. Doney, R. A. Fine, and D. B. Olson, Geochemical estimates of denitrifications in the Arabian Sea and the Bay of Bengal during WOCE, Geophys. Res. Lett., 24(21), 2539–2552, 1997.Google Scholar
  88. Indermühle, A., E. Monnin, B. Stauffer, T. F. Stocker, and M. Wahlen, Atmospheric CO2 concentration from 60 to 20 kyr BP from the the Taylor Dome ice core, Antarctica, Geophys. Res. Lett., 27(5), 735–738, 2000.Google Scholar
  89. Indermühle, A., T. F. Stocker, E Joos, H. Fischer, H. J. Smith, M. Wahlen, B. Deck, D. Mastroianni, J. Tschumi, T. Blunier, R. Meyer, and B. Stauffer, Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121–126, 1999.Google Scholar
  90. Jahnke, R. A., and D. B. Jahnke, Rates of C, N, P, and Si recycling and denitrification at the U.S. Mid-Atlantic continental slope depocenter, Deep Sea Res. I, 44(8), 1405–1428, 2000.Google Scholar
  91. Jin, X., and N. Gruber, Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions, Geophys. Res. Lett., in press, 2003.Google Scholar
  92. Johnsen, S. J., H. Clausen, W. Dansgaard, N. Gundestrup, C. Hammer, U. Andersen, K. Andersen, C. Hvidberg, D. Dahl-Jensen, J. Steffensen, H. Shoji, A. Sveinbjörnsdóttir, J. White, J. Jouzel, and D. Fisher, The δ180 record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability, J. Geophys. Res., 102, 26397–26410, 1997.Google Scholar
  93. Jouzel, J., V. Masson, O. Cattani, S. Falourd, M. Stievenard, B. Stenni, A. Longinelli, S. Johnsen, J. Steffensen, J. Petit, J. Schwander, R. Souchez, and N. Barkov, A new 27 ky high resolution east antarctic climate record, Geophys. Res. Lett., 28(16), 3199–3202, 2001.Google Scholar
  94. Karl, D., R. Letelier, L. Tupas, J. Dore, J. Christian, and D. Hebel, The role of nitrogen fixation in the biogeochemical cycling in the subtropical North Pacific Ocean, Nature, 388, 533–538, 1997.Google Scholar
  95. Karl, D. M., R. Letelier, D. V. Hebel, D. F. Bird, and C. D. Winn, Trichodesmium blooms and new production in the North Pacific gyre, in Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, edited by E. J. Carpenter, pp. 219–237, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  96. Karl, D. M., A. F. Michaels, B. Bergman, D. Capone, E. Carpenter, R. Letelier, F. Lipschultz, H. Paerl, D. Sigman, and L. Stal, Dinitrogen fixation in the world’s ocean, Biogeochemistry, 57/58, 47–98, 2002.Google Scholar
  97. Kawase, M., and J. L. Sarmiento, Nutrients in the Atlantic thermocline, J. Geophys. Res., 90(C5), 8961–8979, 1985.Google Scholar
  98. Keeling, C. D., NATO lecture 2: Surface ocean CO2, in The Global Carbon Cycle, edited by M. Heimann, pp. 413–430, Springer-Verlag, New York, 1993.Google Scholar
  99. Kienast, S. S., S. E. Calvert, and T. F. Pedersen, Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120kyr: surface and subsurface paleoceanography, Paleoceanogr, 17(4), 7.1 – 7.17, 1055, doi:10.1029/2001PA000650, 2002.Google Scholar
  100. Knox, F., and M. McElroy, Changes in atmospheric CO2: influence of marine biota at high latitudes, J. Geophys. Res., 89, 4629–4637, 1984.Google Scholar
  101. Kohfeld, K., C. Le Quéré, and S. P. Harrison, Limited role of marine export production for glacial-interglacial CO2 variations, Paleoceanogr., submitted, 2003.Google Scholar
  102. Kuypers, M. M. M., A. O. Sliekers, G. Lavik, M. Schmid, B. B. Jorgensen, J. G. Kuenen, J. S. S. Damste, M. Strous, and M. S. M. Jetten, Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature, 422, 608–610, 2003.Google Scholar
  103. Law, C. S., and N. J. P. Owens, Significant flux of atmospheric nitrous oxide from the northwest Indian ocean, Nature, 346, 826–828, 1990.Google Scholar
  104. Laws, E. A., P. Falkowski, E. Carpenter, and H. Ducklow, Temperature effects on export production in the open ocean, Global Biogeochem. Cycles, 14(4), 1231–1246, 2000.Google Scholar
  105. Lefevre, N., and A. J. Watson, Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations, Global Biogeochem. Cycles, 13(3), 727–736, 1999.Google Scholar
  106. Lenton, T. M., and A. J. Watson, Redfield revisited 1. regulation of nitrate, phosphate, and oxygen in the ocean, Global Biogeochem. Cycles, 14(1), 225–248, 2000.Google Scholar
  107. Liu, K.-K., 1979, Geochemistry of inorganic nitrogen compounds in two marine environments: the Santa Barbara Basin and the ocean off Peru, Ph.d. thesis, Univ. of California, Los Angeles.Google Scholar
  108. Liu, K. K., and I. R. Kaplan, The eastern tropical Pacific as a source of N-15 enriched nitrate in seawater off southern California, Limnol. Oceanogr, 34(5), 820–830, 1989.Google Scholar
  109. Luyten, J. L., J. Pedlosky, and H. Stommel, The ventilated thermocline, J. Phys. Oceanogr, 13, 292–309, 1983.Google Scholar
  110. Mahaffey, C., R. G. Williams, G. A. Wolff, N. M. Mahowald, W. Anderson, and M. Woodward, Biogeochemical signatures of nitrogen fixation in the eastern North Atlantic, Geophys. Res. Lett., 30(6), 33.1 – 33.4, 1300, doi:10.1029/2002GL016542, 2003.Google Scholar
  111. Mahowald, N., K. E. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz, and H. Rodhe, Dust sources and deposition during the Last Glacial Maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15,895–15,916, 1999.Google Scholar
  112. Mantoura, R. F. C., C. S. Law, N. J. P. Owens, P. H. Burkill, E. M. S. Woodward, R. J. M. Howland, and C. A. Lewellyn, Nitrogen biogeochemical cycling in the northwestern Indian ocean, Deep Sea Res. II, 40(3), 651–671, 1993.Google Scholar
  113. Martin, J. H., Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanogr., 5(1), 1–13, 1990.Google Scholar
  114. Martin, J. H., S. E. Fitzwater, and R. M. Gordon, Iron deficiency limits phytoplancton growth in antarctic waters, Global Biogeochem. Cycles, 4(1), 5–12, 1991.Google Scholar
  115. Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow, Vertex: carbon cycling in the northeast Pacific, Deep Sea Res., 34(2), 267–285, 1987.Google Scholar
  116. Matsumoto, K., J. L. Sarmiento, and M. A. Brzezinski, Silicic acid leakage from the Southern Ocean as possible mechanism for explaining glacial atmospheric pCO2, Global Biogeochem. Cycles, 16(10),2 doi:10.1029/2001 GB001442, 2002.Google Scholar
  117. McElroy, M. B., Marine biological controls on atmospheric CO2 and climate, Nature, 302, 328–329, 1983.Google Scholar
  118. Meybeck, M., C, N, P and S in rivers: from sources to global inputs, in Interactions of C, N, P and S, Biogeochemical Cycles and global change, edited by R. Wollast, F. T. Mackenzie, and L. Chou, pp. 163–193, Springer-Verlag, Berlin, 1993.Google Scholar
  119. Michaels, A. F., N. R. Bates, K. O. Buesseler, C. A. Carlson, and A. H. Knap, Carbon-cycle imbalances in the Sargasso Sea, Nature, 372, 537–540, 1994.Google Scholar
  120. Michaels, A. F., D. M. Karl, and D. G. Capone, Element stoichiometry, new production nitrogen fixation, Oceanography, 14(4), 68–77, 2001.Google Scholar
  121. Michaels, A. F., D. Olson, J. L. Sarmiento, J. Ammerman, K. Fanning, R. Jahnke, A. H. Knap, R. Lipschultz, and J. Prospero, Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean, Biogeochemistry, 35, 181–226, 1996.Google Scholar
  122. Middelburg, J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip, Denitrification in marine sediments: A model study, Global Biogeochem. Cycles, 10(4), 661–673, 1996.Google Scholar
  123. Minagawa, M., and E. Wada, Nitrogen isotope ratios of red tide organisms in the East China Sea - a characterization of biological nitrogen fixation, Mar. Chem., 19(3), 245–259, 1986.Google Scholar
  124. Mino, Y., T. Saino, K. Suzuki, and E. M. Non, Isotopic composition of suspended nitrogen (δ 15 ns us) in surface waters of the Atlantic from 50’n to 500s, Global Biogeochem. Cycles, 16(4), 7–1 – 7–9, 1059, doi:10.1029/2002GB001635, 2002.Google Scholar
  125. Monnin, E., A. Indermühle, A. Dallenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112–114, electronic copy, 2002.Google Scholar
  126. Morel, F. M. M., and N. M. Price, The biogeochemical cycles of trace metals in the ocean, Science, 300, 944–947, 2003.Google Scholar
  127. Morrison, J. M., L. A. Codispoti, S. L. Smith, K. Wishner, C. Flagg, W. D. Gardner, S. Gaurin, S. W. A. Naqvi, V. Manghnani, L. Prosperie, and J. S. Gundersen, The oxygen minimum zone in the Arabian Sea during 1995, Deep Sea Res. II, 46, 1903–1931, 1999.Google Scholar
  128. Mullin, M. M., G. H. Rau, and R. W. Eppley, Stable nitrogen isotopes in zooplancton: Some geographic and temporal variations in the North Pacific, Limnol. Oceanogr, 29(6), 1267–1273, 1984.Google Scholar
  129. Naqvi, S., S. D. Souza, and C. Reddy, Relationship between nutrients and dissolved oxygen with special reference to water masses in western Bay of Bengal, Indian J. Mar. Sci., 7, 15–17, 1978.Google Scholar
  130. Naqvi, S. W. A., Some aspects of the oxygen-deficient conditions and denitrification in the Arabian sea, J. Mar. Res., 45, 1049–1072, 1987.Google Scholar
  131. Naqvi, S. W. A., R. J. Noronha, and C. V. G. Reddy, Denitrification in the Arabian Sea, Deep Sea Res., 29(4A), 459–469, 1982.Google Scholar
  132. Naqvi, S. W. A., R. J. Noronha, K. Somasundrar, and R. Sen Gupta, Seasonal changes in the denitrification regime of the Arabian Sea, Deep Sea Res., 37(4), 593–611, 1990.Google Scholar
  133. Naqvi, S. W. A., and M. S. Shailaja, Activity of the respiratory electron transport system and respiration rates within the oxygen minimum layer of the Arabian Sea, Deep Sea Res. II, 40(3), 687–695, 1993.Google Scholar
  134. Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn, Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr, Nature, 295, 220–223, 1982.Google Scholar
  135. Nevison, C. D., J. Butler, and J. Elkins, Global distribution of N2O and the δN2O/AOU yield in the subsurface ocean, Global Biogeochem. Cycles, submitted, 2003.Google Scholar
  136. Orcutt, K. M., F. J. Lipschultz, K. Gundersen, R. Arimoto, J. R. Gallon, A. F. Michaels, and A. H. Knap, A seasonal study of the significance of N2 fixation by trichodesmium spp. at the Bermuda Time-Series Study (BATS) site, Deep Sea Res. II, 48(8–9), 1583–1608, 2001.Google Scholar
  137. Owens, N. J. P., Natural variations in 15n in the marine environment, Adv. Mar. Bio., 24, 389–451, 1987.Google Scholar
  138. Pedlosky, J., Geophysical Fluid Dynamics, Springer Verlag, New York, 1987.Google Scholar
  139. Pride, C., R. Thunell, D. Sigman, L. Keigwin, M. Altabet, and E. Tappa, Nitrogen isotope variations in the Gulf of California since the last glaciation: response to global climate change, Paleoceanogr., 14(3), 397–409, 1999.Google Scholar
  140. Redfield, A. C., B. H. Ketchum, and F. A. Richards, The influence of organisms on the composition of sea-water, in The Sea, edited by M. N. Hill, vol. 2, pp. 26–77, Wiley-Interscience, New York, 1963.Google Scholar
  141. Roethlisberger, R., R. Mulvaney, E. W. Wolff, M. A. Hutterli, M. Bigler, S. Sommer, and J. Jouzel, Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate, Geophys. Res. Lett., 29(20), 24.1 — 24.4, 1963, doi:10.1029/2002GL015186, 2002.Google Scholar
  142. Rueter, J. G., D. A. Hutchins, R. W. Smith, and N. L. Unsworth, Iron nutrition of Trichodesmium, in Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, edited by E. J. Carpenter, pp. 289–306, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  143. Sabine, C. S., M. Heimann, P. Artaxo, D. Bakker, C. Chen, C. Field, N. Gruber, C. Le Quéré, R. G. Prinn, J. E. Richey, P. Romero-Lankao, J. Sathaye, and R. Valentini, Current status and past trends of the carbon cycle, in Toward CO 2 stabilization: Issues, Strategies, and Consequences, edited by C. B. Field and M. R. Raupach, Chapter 2, Island Press, Vienna, 2003.Google Scholar
  144. Sanudo-Wilhelmy, S. A., A. B. Kustka, C. J. Gobler, D. A. Hutchins, M. Yang, K. Lwiza, J. Burns, D. G. Capone, J. A. Raven, and E. J. Carpenter, Phosphorus limitation of nitrogen fixation by trichodesmium in the central Atlantic ocean, Nature, 411, 66–69, 2001.Google Scholar
  145. Sarmiento, J., A tritium box model of the North Atlantic thermocline, J. Phys. Oceanogr., 13, 1269–1274, 1983.Google Scholar
  146. Sarmiento, J. L., J. P. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto, and R. Slater, A new estimate of the CaCO3:Corg ratio, Global Biogeochem. Cycles, 16(4), 1107, doi:1029/2002GB 001919, 2002.Google Scholar
  147. Sarmiento, J. L., and N. Gruber, Anthropogenic carbon sinks, Physics Today, 55, 30–36, 2002.Google Scholar
  148. Sarmiento, J. L., and J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric pCO2, Nature, 308, 621–624, 1984.Google Scholar
  149. Seitzinger, S., and A. Giblin, Estimating denitrification in North Atlantic continental shelf sediments, Biogeochemistry, 35(1), 235–260, 1996.Google Scholar
  150. Siegenthaler, U., and T. Wenk, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624–626, 1984.Google Scholar
  151. Sigman, D., D. C. McCorkle, and W. R. Martin, The calcite lysocline as a constraint on glacial/ interglacial low-latitude production changes, Global Biogeochem. Cycles, 12(3), 409–427, 1998.Google Scholar
  152. Sigman, D. M., M. A. Altabet, D. D. McCorkle, R. Francois, and G. Fischer, The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters, Global Biogeochem. Cycles, 13(4), 1149–1166, 1999.Google Scholar
  153. Sigman, D. M., M. A. Altabet, D. D. McCorkle, R. Francois, and G. Fischer, The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior, J. Geophys. Res., 105(C8), 19599–19614, 2000.Google Scholar
  154. Sigman, D. M., and E. A. Boyle, Glacial/interglacial variations in carbon dioxide: searching for a cause, Nature, 407, 859–869, 2000.Google Scholar
  155. Sigman, D. M., R. Robinson, A. N. Knapp, A. van Geen, D. C. McCorkle, J. A. Brandes, and R. C. Thunell, Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate, Geochem., Geophys., Geosys., 4(5), 1–20, doi :10.1029/2002GCO003 84, 2003.Google Scholar
  156. Smith, S., M. Roman, K. Wishner, M. Gowing, L. Codispoti, R. Barber, J. Marra, I. Prusova, and C. Flagg, Seasonal response of zooplankton to monsoonal reverals in the Arabian Sea, Deep Sea Res. II, 45, 2369–2404, 1998.Google Scholar
  157. Smith, S. V., Phosphorus versus nitrogen limitation in the marine environment, Limnol. Oceanogr, 29(6), 1149–1160, 1984.Google Scholar
  158. Sowers, T., R. B. Alley, and J. Jubenville, Ice core records of atmospheric N2O covering the last 106,000 years, Science, 301, 945–948, 2003.Google Scholar
  159. Tegen, I., and I. Fung, Modeling of mineral dust in the atmosphere: Sources, transport and optical thickness, J. Geophys. Res., 99, 22897–22914, 1994.Google Scholar
  160. Tyrrell, T., The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 400, 525–531, 1999.Google Scholar
  161. Villareal, T. A., and E. J. Carpenter, Nitrogen fixation, suspension characteristics, and chemical composition of rhizosolenia mats in the central Pacific gyre, Bio. Oceanogr, 6, 327–345, 1989.Google Scholar
  162. Voss, M., J. W. Dippner, and J. P. Montoya, Nitrogen isotope patterns in the oxygen deficient waters of the Eastern Tropical North Pacific Ocean, Deep Sea Res. I, 48(8), 35–49, 2001.Google Scholar
  163. Wada, E., and A. Hattori, Nitrogen in the Sea: Forms, Abundance, and Rate Processes, CRC Press, Boca Raton, FL, 1991.Google Scholar
  164. Walsh, J. J., Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen, Nature, 350, 53–55, 1991.Google Scholar
  165. Walsh, J. J., Nitrogen fixation within a tropical upwelling ecosystem: Evidence for a redfield budget of carbon/nitrogen cycling by the total phytoplankton community, J. Geophys. Res., 101(C9), 20607–20616, 1996.Google Scholar
  166. Warren, B. A., Context of the suboxic layer in the Arabian Sea, Proceedings of the Indian Academy of Sciences- Earth and Planetary Sciences, 103(2), 301–314, 1994.Google Scholar
  167. Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica, Meltwater pulse lA from Antarctica as a trigger of the Bolling-Allerod warm interval, Science, 299, 1709–1713, 2003.Google Scholar
  168. Wollast, R., Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, in THE SEA: The global coastal ocean, edited by K. H. Brink and A. R. Robinson, vol. 10, Chapter 9, pp. 213–252, John Wiley & Sons, New York, 1998.Google Scholar
  169. Wu, J., W. Sunda, E. A. Boyle, and D. M. Karl, Phosphate depletion in the Western North Atlantic Ocean, Science, 289, 759–762, 2000.Google Scholar
  170. Wyrtki, K., The physical oceanography of the Indian Ocean, in The biology of the Indian Ocean, pp. 18–36, Springer-Verlag, 1973.Google Scholar
  171. Zehr, J. P., E. Carpenter, and T. A. Villareal, New perspectives on nitrogen-fixing microrganisms in tropical and subtropical oceans, Trends Microbio., 8(2), 68–73, 2000.Google Scholar
  172. Zehr, J. P., J. B. Waterbury, P. J. Turner, J. P. Montoya, E. Omoregie, G. E Steward, A. Hansen, and D. M. Karl, Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean, Nature, 412, 635–638, 2001.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Nicolas Gruber
    • 1
  1. 1.Institute of Geophysics and Planetary Physics, Department of Atmospheric and Oceanic SciencesUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations