Air Lubrication and Air Cavity Analysis

  • Gennadiy Alexeevitch Pavlov
  • Liang Yun
  • Alan Bliault
  • Shu-Long He


In this chapter we will use the acronym WFDR for water friction drag reduction to describe the general reduction of the frictional force of a hull wetted surface in water flow and air drag reduction (ADR) to describe achievement of reduction using air as a lubricant. If the local skin friction force on a surface in water flow is τw, then the local skin friction coefficient CF can be defined as:where ρ is the water density and U0 is the inflow velocity.


  1. 1.
    Sanders, W.C., Winkel, E.S., Dowling, D.R., Perlin, M., Ceccio, S.L.: Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J. Fluid Mech. 552, 353–380 (2006)CrossRefGoogle Scholar
  2. 2.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids. 26, 883–889 (1983)CrossRefGoogle Scholar
  3. 3.
    Magnaudet, J., Eames, I.: The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659–708 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elbing, B.R., Winkel, E.S., Lay, K.A., Ceccio, S.L., Dowling, D.R., Perlin, M.: Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 612, 201–236 (2008)CrossRefGoogle Scholar
  5. 5.
    Elbing, B.R., Mäkiharju, S., Wiggins, A., Perlin, M., Dowling, D.R., Ceccio, S.L.: On the scaling of air layer drag reduction. J. Fluid Mech. 717, 484–513 (2013)CrossRefGoogle Scholar
  6. 6.
    Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. Am. Inst. Chem. Eng. J. Part 1, 289–295 (1955)CrossRefGoogle Scholar
  7. 7.
    Knapp, R.T., Daily, J.W., Hammit, F.G.: Cavitation, p. 728. McGraw-Hill, New York (1971)Google Scholar
  8. 8.
    Matveev, K.I., Miller, M.J.: Air cavity with variable length under a model hull. Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ. 225, 161–169 (2011)CrossRefGoogle Scholar
  9. 9.
    Butuzov, A.A.: Ventilated cavitation flow behind a slender wedge on the lower surface of a horizontal surface. Fluid Dyn. Part 2, 56–58 (1967)Google Scholar
  10. 10.
    Lay, K.A., Yakushiji, R., Mäkiharju, S., Perlin, M., Ceccio, S.L.: Partial cavity drag reduction at high Reynolds numbers. J. Ship Res. 54(2), 109–119 (2010)Google Scholar
  11. 11.
    Mäkiharju, S., Elbing, B.R., Wiggins, A., Dowling, D.R., Perlin, M., Ceccio, S.L.: Perturbed partial cavity drag reduction at high Reynolds numbers. In: 28th Symposium on Naval Hydrodynamics, Pasadena, California, 12–17 September 2010Google Scholar
  12. 12.
    Kawanami, Y., Kato, H., Yamaguchi, A.: Three-dimensional characteristics of the cavities formed on a two-dimensional foil. In: Proceedings, Third International Symposium on Cavitation, Grenoble, France, pp. 191–196 (1998)Google Scholar
  13. 13.
    Ivanov, A.N.: Hydrodynamics of developed cavitation flows. St. Petersburg J. Shipbuild. (1980)Google Scholar
  14. 14.
    Epstein, L.A.: Methods of the theory of dimensions and similarity in ship hydromechanics. St. Petersburg J. Shipbuild. (1970)Google Scholar
  15. 15.
    Butuzov, A.A.: On the artificial cavitation flow behind a thin wedge placed on the lower surface of a horizontal surface. In: Mechanics of Fluid and Gas, vol. 2. Izvestiya Academy of Sciences, USSR, Moscow (1966)Google Scholar
  16. 16.
    Butuzov, A.A.: On the limit parameters of an artificial cavity formed on the lower surface of a horizontal surface. In: Mechanics of Fluid and Gas. Izvestiya AN SSSR (1966). No. 2Google Scholar
  17. 17.
    Ivanov, A.N., Butuzov, A.A., Olenin, J.L.: Questions of cavitation in the problem of reducing the hydrodynamic drag of vessels. Problems of Applied Ship Hydromechanics, J. Shipbuild. (1975)Google Scholar
  18. 18.
    Eller, A.O.: On the mutual influence of ventilated caverns located one behind the other on the underside of a horizontal surface. Works of the Scientific-Technical Society of the Shipbuilding Industry. 125, 118–123 (1969)Google Scholar
  19. 19.
    Basin, A.M., Korotkin, A.I., Kozlov, L.F.: Management of the boundary layer of the ship (main problems). St. Petersburg J. Shipbuild. (1968)Google Scholar
  20. 20.
    Butuzov, A.A.: Theoretical analysis of detached cavitation created on a gliding surface. In: Works of the Scientific-Technical Society of the Shipbuilding Industry, vol 88 (1967)Google Scholar
  21. 21.
    Butuzov, A.A.: Influence of the geometrical parameters of the wetted part of the hull on the hydrodynamic characteristics of a gliding vessel with an artificial cavern on the bottom. In: Works of the Scientific-Technical Society of the Shipbuilding Industry, vol 186 (1972)Google Scholar
  22. 22.
    Barabanov, V.A., Butuzov, A.A., Ivanov, А.N., Titov, I.A.: Tear-off cavitation wrapping profiles in case of gliding in boundless flow. In: Nauka М. (ed) Proceedings of the IUTAM Symposium in Leningrad, June 22–26 1971, p. 242. Publishing House, Chief Office of Physical and Mathematical Literature (1973)Google Scholar
  23. 23.
    Butuzov, A.A., Pakusina, T.V.: Calculation of the flow past a gliding surface with an artificial cavity. In: Proceedings of A.N. Krylov Central Research Institute, St. Petersburg, vol. 258 (1970)Google Scholar
  24. 24.
    Aleksandrov, K.V.: Jet flow around a wedge-shaped column crossing a free surface. Mechanics of fluid and gas, Izvestiya Academy of Sciences, Moscow, USSR, vol. 4 (1976)Google Scholar
  25. 25.
    Anosov, V.N.: Features of cavity formation behind a wedge-shaped vertical stand that crosses a free surface. In: Abstracts of the Report at the 39th Krylov Readings. St. Petersburg (1999)Google Scholar
  26. 26.
    Anosov, V.N.: Influence of the characteristics of airborne artificial caverns on the resistance to the movement of high-speed vessels. J. Shipbuild. 3, 23–26 (2008)Google Scholar
  27. 27.
    Derektor Shipyard delivers first NGA 45m catamaran. Fast Ferry International, pp 15–21 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gennadiy Alexeevitch Pavlov
    • 1
  • Liang Yun
    • 2
  • Alan Bliault
    • 3
  • Shu-Long He
    • 4
  1. 1.TheodosiaRepublic of Crimea
  2. 2.ShanghaiChina
  3. 3.SolaNorway
  4. 4.WuxiChina

Personalised recommendations