Image and Video-Based Biometrics

  • Vishal M. PatelEmail author
  • Jaishanker K. Pillai
  • Rama Chellappa


Biometrics deals with the problem of identifying individuals based on physiological or behavioral characteristics. Since many physical characteristics, such as face, iris, etc., and behavioral characteristics, such as voice, expression, etc., are unique to an individual, biometric analysis offers a reliable and natural solution to the problem of identity verification. In this chapter, we discuss image and video-based biometrics involving face, iris and gait. In particular, we discuss several recent approaches to physiological biometrics based on Sparse Representations and Compressed Sensing. Some of the most compelling challenges and issues that confront research in biometrics are also addressed.


Face Recognition Video Sequence Sparse Representation Compressed Sensing Near Neighbor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by a MURI Grant N00014-08-1-0638 from the Office of Naval Research.


  1. 1.
    Casia iris image dataset.
  2. 2.
    Iris challenge evaluation data.
  3. 3.
  4. 4.
    Nandakumar K., Ross, A., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006) Google Scholar
  5. 5.
    Arandjelovic, O., Cipolla, R.: Face recognition from video using the generic shape–illumination manifold. Comput. Vis. Image. Underst. 27–40 (2006) Google Scholar
  6. 6.
    Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (July 2007) CrossRefGoogle Scholar
  7. 7.
    Basari, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003) CrossRefGoogle Scholar
  8. 8.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class-specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) CrossRefGoogle Scholar
  9. 9.
    Biswas, S., Aggarwal, G., Chellappa, R.: Robust estimation of albedo for illumination–invariant matching and shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 884–899 (March 2009) CrossRefGoogle Scholar
  10. 10.
    Biswas, S., Chellappa, R.: Pose-robust albedo estimation from a single image. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2010) Google Scholar
  11. 11.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003) CrossRefGoogle Scholar
  12. 12.
    Bowyer, K.W., P.J., Flynn: The nd-iris-0405 iris image dataset. Notre Dame CVRL Technical Report Google Scholar
  13. 13.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008) CrossRefGoogle Scholar
  14. 14.
    Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993) CrossRefGoogle Scholar
  15. 15.
    Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, New York (2010) zbMATHGoogle Scholar
  16. 16.
    Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14(8), 1724–1733 (1997) CrossRefGoogle Scholar
  17. 17.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (June 2001) CrossRefGoogle Scholar
  18. 18.
    Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: Image Averaging for Improved Iris Recognition. Lecture Notes in Computer Science, vol. 5558 (2009) Google Scholar
  19. 19.
    Huang, J., Huang, X., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  20. 20.
    Pillai, J., Patel, V.M., Chellappa, R., Ratha, N.K.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1838–1841 (2010) CrossRefGoogle Scholar
  21. 21.
    Chang, K., Bowyer, K.W., Flynn, P.: A survey of approaches and challenges in 3d and multi-model 3d+2d face recognition. Comput. Vis. Image Underst. 101, 1–15 (2006) CrossRefGoogle Scholar
  22. 22.
    Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., Chowdhury, A.R., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004) CrossRefGoogle Scholar
  23. 23.
    Lee, K., Ho, J., Yang, M., Kriegman, D.J.: Visual tracking and recognition using probabilistic manifolds. Comput. Vis. Image. Underst. 99(3), 303–331 (2005) CrossRefGoogle Scholar
  24. 24.
    Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recogn. 36(9), 1945–1959 (September 2003) zbMATHCrossRefGoogle Scholar
  25. 25.
    Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 863–876 (June 2006) CrossRefGoogle Scholar
  26. 26.
    Masek, L., Kovesi, P.: MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The University of Western Australia, Perth (2003) Google Scholar
  27. 27.
    Nixon, M., Tan, T., Chellappa, R.: Human Identification Based on Gait. Springer, New York (2006) CrossRefGoogle Scholar
  28. 28.
    Patel, V.M., Wu, T., Biswas, S., Chellappa, R., Phillips, P.J.: Dictionary-based face recognition. UMIACS Tech. Report, UMIACS-TR-2010-07/CAR-TR-1030, University of Maryland, College Park (July 2010) Google Scholar
  29. 29.
    Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: Data sets and baseline algorithm. In: Proceedings of the 16th International Conference on Pattern Recognition (2002) Google Scholar
  30. 30.
    Pillai, J.K., Patel, V.M., Chellappa, R., Ratha, N.K.: Secure and robust iris recognition using random projections and sparse representations. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (September 2010) Google Scholar
  31. 31.
    Queirolo, C.C., Silva, L., Bellon, O.R.P., Segundo, M.P.: 3d face recognition using simulated annealing and the surface interpenetration measure. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 206–219 (2010) CrossRefGoogle Scholar
  32. 32.
    Robledo, I., Sarkar, S.: Statistical motion model based on the change of feature relationships: Human gait-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1323–1328 (October 2003) CrossRefGoogle Scholar
  33. 33.
    Sarkar, S., Phillips, P.J., Liu, Z., Robledo, I., Grother, P., Bowyer, K.: The human id gait challenge problem: Data sets, performance. IEEE Tran. Pattern Anal. Mach. Intell. 27(2), 162–177 (February 2005) CrossRefGoogle Scholar
  34. 34.
    Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: Nineteen results all computer vision researchers should know about. Proc. IEEE 94(11), 1948–1962 (2006) CrossRefGoogle Scholar
  35. 35.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991) CrossRefGoogle Scholar
  36. 36.
    Veeraraghavan, A., Chowdhury, A.R., Chellappa, R.: Matching shape sequences in video with an application to human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 1896–1909 (December 2005) CrossRefGoogle Scholar
  37. 37.
    Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Ma, Y.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 597–604 (June 2009) Google Scholar
  38. 38.
    Wang, Y., Liu, J., Tang, X.: Robust 3d face recognition by local shape difference boosting. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1858–1870 (2010) CrossRefGoogle Scholar
  39. 39.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997) CrossRefGoogle Scholar
  40. 40.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (June 2010) CrossRefGoogle Scholar
  41. 41.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009) CrossRefGoogle Scholar
  42. 42.
    Zhang, L., Samaras, D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 351–363 (2006) CrossRefGoogle Scholar
  43. 43.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 35, 399–458 (December 2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Vishal M. Patel
    • 1
    Email author
  • Jaishanker K. Pillai
    • 1
  • Rama Chellappa
    • 1
  1. 1.Department of Electrical and Computer Engineering, Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations