Skin Color in Face Analysis

  • J. Birgitta Martinkauppi
  • Abdenour Hadid
  • Matti Pietikäinen

Abstract

This chapter deals with the role of color in facial image analysis such as face detection and recognition. First, we introduce the use of color information in computer vision in general and in the field of facial image analysis in particular. Then, we give an introduction to color formation and discuss the effect of illumination on color appearance, and its consequences. The skin data can come from different sources like real faces, photos or print. Separating the sources of skin data is presented, and skin color modeling is discussed. We also review the use of color in face detection, while the contribution of color to face recognition is covered.

References

  1. 1.
    Angelopoulou, E., Molana, R., Daniilidis, K.: Multispectral skin color modeling. In: Proc. IEEE Computer Society’s Computer Vision and Pattern Recognition, pp. 635–642, December 2001 Google Scholar
  2. 2.
    Chan, C., Kittler, J.V., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: ICB07, pp. 809–818 (2007) Google Scholar
  3. 3.
    Cho, K., Jang, J., Hong, K.: Adaptive skin-color filter. Pattern Recognit. 34(5) (2001) Google Scholar
  4. 4.
    Do, H.C., You, J., Chien, S.: Skin color detection through estimation and conversion of illuminant color using sclera region of eye under varying illumination. In: Proc. 18th International Conference on Pattern Recognition, pp. 327–330, August 2006 Google Scholar
  5. 5.
    Edwards, E.A., Duntley, S.: The pigments and color of living human skin. Am. J. Anat. 65(1), 1–33 (1939) CrossRefGoogle Scholar
  6. 6.
    Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough. In: Proceedings of 5th European Conference on Computer Vision, pp. 445–459, June 1998 Google Scholar
  7. 7.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimed. 1(3), 264–277 (1999) CrossRefGoogle Scholar
  8. 8.
    Graf, H.P., Chen, T., Petajan, E., Cosatto, E.: Locating faces and facial parts. In: Proceedings of 1st International Workshop Automatic Face and Gesture Recognition, pp. 41–46, May 1995 Google Scholar
  9. 9.
    Hadid, A., Pietikäinen, M.: A hybrid approach to face detection under unconstrained environments. In: Proc. 18th International Conference on Pattern Recognition (ICPR), vol. 1, p. 4, Hong Kong (2006) Google Scholar
  10. 10.
    Hadid, A., Pietikäinen, M., Martinkauppi, B.: Color-based face detection using skin locus model and hierarchical filtering. In: 16th International Conference on Pattern Recognition, pp. 196–200, Quebec, August 2002 Google Scholar
  11. 11.
    Haiyuan, W., Qian, C., Yachida, M.: Face detection from color images using a fuzzy pattern matching method. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 557–563 (1999) CrossRefGoogle Scholar
  12. 12.
    Harwood, L.A.: A chrominance demodulator ic with dynamic flesh correction. IEEE Trans. Consum. Electron. CE-22, 111–117 (1976) CrossRefGoogle Scholar
  13. 13.
    Hjelmas, E., Low, B.K.: Face detection: A survey. Comput. Vis. Image Underst. 83(3), 236–274 (2001) MATHCrossRefGoogle Scholar
  14. 14.
    Hsu, R.L.: Face detection and modeling for recognition. PhD thesis, Michigan State University (2002) Google Scholar
  15. 15.
    Hsu, R.-L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5) (2002) Google Scholar
  16. 16.
    Hsu, E., Mertens, T., Paris, S., Avidan, S., Durand, F.: Light mixture estimation for spatially varying white balance. ACM Trans. Graph. (TOG) 27(3) (2008) Google Scholar
  17. 17.
    Hunke, M., Waibel, A.: Face locating and tracking for human-computer interaction. In: Proceedings of 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, pp. 1277–1281 October 1994 Google Scholar
  18. 18.
    Imai, F.H., Tsumura, N., Haneishi, H., Miyake, Y.: Principal component analysis of skin color and its application to colorimetric reproduction on CRT display and hardcopy. J. Imaging Sci. Technol. 40(5) (1996) Google Scholar
  19. 19.
    Jones, C.F.: Color face recognition using quaternionic Gabor wavelets. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2005) Google Scholar
  20. 20.
    Jones, C.F., Abbott, A.L.: Optimization of color conversion for face recognition. EURASIP J. Appl. Signal Process. 4, 522–529 (2004) Google Scholar
  21. 21.
    Jones, M., Rehg, J.: Statistical color models with application to skin detection. Int. J. Comput. Vis. 46(1) (2002) Google Scholar
  22. 22.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognit. 40(3) (2007) Google Scholar
  23. 23.
    Kemp, R., Pike, G., White, P., Musselman, A.: Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues. Perception 25(1), 37–52 (1996) CrossRefGoogle Scholar
  24. 24.
    Kim, Y.S., Na, J., Yoon, S., Yi, J.: Masked fake face detection using radiance measurements. JOSA-A 26(4) (2009) Google Scholar
  25. 25.
    Lee, E., Ha, Y.: Automatic flesh tone reappearance for color enhancement in TV. IEEE Trans. Consum. Electron. 43(4), 1153–1159 (1997) CrossRefGoogle Scholar
  26. 26.
    Li, B., Xue, X., Fan, J.: A robust incremental learning framework for accurate skin region segmentation in color images. Pattern Recognit. 40(12) (2007) Google Scholar
  27. 27.
    Liu, C.: Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Trans. Inf. Forensics Secur. 3(2), 213–222 (2008) CrossRefGoogle Scholar
  28. 28.
    Liu, Z., Liu, C.: Fusion of the complementary discrete cosine features in the yiq color space for face recognition. Comput. Vis. Image Underst. 111(3), 249–262 (2008) CrossRefGoogle Scholar
  29. 29.
    Liu, Z., Liu, C.: A hybrid color and frequency features method for face recognition. IEEE Trans. Image Process. 17(10), 1975–1980 (2008) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, Z., Liu, C.: Robust face recognition using color information. In: ICB, pp. 122–131 (2009) Google Scholar
  31. 31.
    Marszalec, E., Martinkauppi, B., Soriano, M., Pietikäinen, M.: A physics-based face database for color research. J. Electron. Imaging 9(1), 32–38 (2000) CrossRefGoogle Scholar
  32. 32.
    Martinkauppi, B., Finlayson, G.: Designing a simple 3-channel camera for skin detection. In: Proc. the 12th Color Imaging Conference: Color Science and Engineering: Systems, Technologies, and Applications, pp. 151–156, November 2004 Google Scholar
  33. 33.
    Martinkauppi, B., Pietikäinen, M.: Facial skin color modeling. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, pp. 109–131. Springer, Berlin (2005) Google Scholar
  34. 34.
    Martinkauppi, B., Soriano, M., Laaksonen, M.: Behavior of skin color under varying illumination seen by different cameras in different color spaces. In: Machine Vision in Industrial Inspection IX. Proc. SPIE, vol. 4301, pp. 102–113 (2001) Google Scholar
  35. 35.
    Martinkauppi, B., Soriano, M., Pietikäinen, M.: Comparison of skin color detection and tracking methods under varying illumination. J. Electron. Imaging 14(4) (2005) Google Scholar
  36. 36.
    Martinkauppi, B., Hadid, A., Pietikäinen, M.: Color cue in facial image analysis. In: Lukac, R., Plataniotis, K. (eds.) Color Image Processing: Methods and Applications, pp. 285–308. CRC Press, Boca Raton (2006) Google Scholar
  37. 37.
    Martinkauppi, B., Lehtonen, J., Parkkinen, J.: Near-infrared images of skin. In: Proc. 4th European Conference on Colour in Graphics, Imaging, and Vision, 10th International Symposium on Multispectral Colour Science, pp. 508–511, June 2008 Google Scholar
  38. 38.
    Nakai, H., Manabe, Y., Inokuchi, S.: Simulation and analysis of spectral distribution of human skin. In: Proc. 14th International Conference on Pattern Recognition, pp. 1065–1067 (1998) Google Scholar
  39. 39.
    Raja, Y., McKenna, S., Gong, G.: Tracking and segmenting people in varying lighting conditions using colour. In: Proceedings of IEEE 3rd International Conference on Automatic Face and Gesture Recognition, pp. 228–233, April 1998 CrossRefGoogle Scholar
  40. 40.
    Rajapakse, M., Tan, J., Rajapakse, J.: Color channel encoding with NMF for face recognition. In: IEEE Conference on Image Processing, vol. 3, pp. 2007–2010 (2004) Google Scholar
  41. 41.
    Sharma, P., Reilly, R.: A colour face image database for benchmarking of automatic face detection algorithms. In: EC-VIP-MC 2003 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, pp. 423–428 (2003) CrossRefGoogle Scholar
  42. 42.
    Sobottka, K., Pitas, I.: Face localization and facial feature extraction based on shape and color information. In: IEEE Conference on Image Processing, vol. 3, pp. 483–486 (1996) Google Scholar
  43. 43.
    Soriano, M., Martinkauppi, B., Huovinen, S., Laaksonen, M.: Adaptive skin color modeling using the skin locus for selecting training pixels. Pattern Recognit. 36(3), 681–690 (2003) CrossRefGoogle Scholar
  44. 44.
    Störring, M., Andersen, H.J., Granum, E.: Physics-based modelling of human skin colour under mixed illuminants. J. Robot. Auton. Syst. 35(3–4), 131–142 (2001) MATHCrossRefGoogle Scholar
  45. 45.
    Sun, H.: Skin detection for single images using dynamic skin color modeling. Pattern Recognit. 43(4) (2010) Google Scholar
  46. 46.
    Terrillon, J.C., Shirazi, M., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human face in color images. In: IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 54–61 (2000) CrossRefGoogle Scholar
  47. 47.
    Tomaschitz, J.A., Facon, J.: Skin detection applied to multi-racial images. In: Proc. 16th International Conference on Systems, Signals and Image Processing IWSSIP, pp. 1–3, June 2009 CrossRefGoogle Scholar
  48. 48.
    Torres, L., Reutter, J., Lorente, L.: The importance of the color information in face recognition. In: IEEE Conference on Image Processing, vol. 3, pp. 627–631 (1999) Google Scholar
  49. 49.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 511–518 (2001) Google Scholar
  50. 50.
    Wyszecki, G., Stiles, W.S. (eds.): Color Science Concepts and Methods, Quantitative Data and Formulae, 2nd edn. Wiley, New York (2000) Google Scholar
  51. 51.
    Yang, M.H., Ahuja, N.: Detecting human faces in color images. In: Proceedings of International Conference on Image Processing, pp. 127–130 (1998) Google Scholar
  52. 52.
    Yang, J., Liu, C.: A general discriminant model for color face recognition. In: ICCV, pp. 1–6 (2007) Google Scholar
  53. 53.
    Yang, J., Liu, C.: Color image discriminant models and algorithms for face recognition. IEEE Trans. Neural Netw. 19(12), 2088–2098 (2008) CrossRefGoogle Scholar
  54. 54.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 34–58 (2002) CrossRefGoogle Scholar
  55. 55.
    Yang, J., Liu, C., Zhang, L.: Color space normalization: Enhancing the discriminating power of color spaces for face recognition. Pattern Recognit. 43(4), 1454–1466 (2010) MATHCrossRefGoogle Scholar
  56. 56.
    Yip, A.W., Sinha, P.: Contribution of color to face recognition. Perception 31(8), 995–1003 (2002) CrossRefGoogle Scholar
  57. 57.
    Yoo, T., Oh, I.: A fast algorithm for tracking human faces based on chromaticity histograms. Pattern Recognit. Lett. 20(10) (1999) Google Scholar
  58. 58.
    Young, C.J., Man, R.Y., Plataniotis, K.N.: Color face recognition for degraded face images. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(5), 1217–1230 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • J. Birgitta Martinkauppi
    • 1
  • Abdenour Hadid
    • 2
  • Matti Pietikäinen
    • 2
  1. 1.Department of Electrical Engineering and AutomationUniversity of VaasaVaasaFinland
  2. 2.Machine Vision Group, Department of Electrical and Information EngineeringUniversity of OuluOuluFinland

Personalised recommendations