Advertisement

Oogenesis pp 19-37 | Cite as

Origin, Migration, and Proliferation of Human Primordial Germ Cells

  • Massimo De FeliciEmail author
Chapter

Abstract

The first histological observations about the origin of the precursors of gametes termed primordial germ cells (PGCs) in extragonadal regions and their subsequent migration into the developing gonads in human embryos date back to the early twentieth century. Fuss (Anat Am 39:407–409, 1911, Anat EntwMech 81:1–23, 1912) and Felix (Die Entwicklung der Harn- und Geschlechtsorgane. In: Keibel-Mall Handbuch der 1qEntwicklungageschichte des Menshen, vol 2. Leipzig, Hirzel, pp 732–955, 1911) were apparently the first ones to describe the extragonadal location of PGCs in human embryos. In the youngest, 2.5 mm long, embryo examined (23–26 days postfertilization), These authors described PGCs in the endoderm of the yolk sac wall as cells identifiable by their large size and spherical shape. Subsequently, Politzer (Z Anat Entw Gesch 87: 766–80, 1928, Z Anat Entw Gesch 93:386–428, 1930, Z Anat EntwGesch 100:331–336, 1933) and Witschi (Contr Embryol Carnegie Inst 209:67–80, 1948) ­studied the distribution of PGCs in a considerable number of embryos from presomite stages (0.3–0.8 mm, about 3 weeks) to 8.5 mm (5 weeks). Both authors described the migration of PGCs from the yolk sac to the developing gonads. Following a hot debate, it is now generally accepted that after their arrival into the gonadal anlage, PGCs give rise to the oogonia/oocytes and gonocytes (or prespermatogonia) in the embryonic ovary and testis, respectively. These germ cells enter a complex series of events that in the adult end with the formation of fertilizable oocytes and sperm. Because of the inaccessibility of the human embryo to experimental investigations at these early stages, we still know little about cellular and molecular mechanisms controlling the formation, differentiation, and development of human PGCs. This chapter describes the life history of human PGCs combining old and new information and, where appropriate, making use of the most recent results obtained in the mouse.

Keywords

Primordial germ cells Embryonic gametogenesis Gonad development BMPs 

References

  1. 1.
    Fuss A. Uber extraregionare Geschlechtszellen bei einem menschlichen Embryo von 4 Wochen. Anat Am. 1911;39:407–9.Google Scholar
  2. 2.
    Fuss A. Uber die Geschlechtszellen des Menschen und der Saugetiere. Arch, mikrosk. Anat Entw Mech. 1912;81:1–23.Google Scholar
  3. 3.
    Felix W. Die Entwicklung der Harn- und Geschlecht­sorgane. In: Keibel-Mall Handbuch der 1qEntwicklungageschichte des Menshen, vol. 2. Leipzig: Hirzel; 1911. p. 732–955.Google Scholar
  4. 4.
    Strome S, Lehmann R. Germ versus soma decisions -lessons from flies and worms. Science. 2007;316:392–3.PubMedGoogle Scholar
  5. 5.
    McLaren A. Signaling for germ cells. Genes Dev. 1999;13:373–6.PubMedGoogle Scholar
  6. 6.
    De Felici M. Primordial germ cell biology at the beginning of the XXI century. Int J Dev Biol. 2009;53:891–4.PubMedGoogle Scholar
  7. 7.
    Chuva de Sousa Lopes SM, Roelen BAJ. On the formation of germ cells: the good, the bad and the ugly. Differentiation. 2010;79:131–40.PubMedGoogle Scholar
  8. 8.
    Matsui Y. The molecular mechanisms regulating germ cell development and potential. J Androl. 2010;31:61–4.PubMedGoogle Scholar
  9. 9.
    Saitou M, Yamaji M. Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction. 2010;139:931–42.PubMedGoogle Scholar
  10. 10.
    Motta PM, Makabe S, Nottola SA. The ultrastructure of human reproduction. I. The natural history of the female germ cell: origin, migration and differentiation inside the developing ovary. Hum Reprod. 1997;3:281–95.Google Scholar
  11. 11.
    Kohno S. Zur Kenntnis der Keibahn des Menshen. Arch Gynak. 1925;126:310–26.Google Scholar
  12. 12.
    Hamlett GWD. Primordial germ cells in a 4.5 mm human embryo. Anat Rec. 1935;61:273–9.Google Scholar
  13. 13.
    Politzer GA. Uber einen menschlichen Embryo mit 18 Ursegmentenpaaren. (Pp. 674–727.) B. Uber Zahl, Lage und Beschaffenheit der Urkeimzellen eines menschlichen Embryo mit 26–27 Ursegmentenpaaren. Z Anat EntwGesch. 1928;87:766–80.Google Scholar
  14. 14.
    Politzer G. Uber einen menschlichen Embryo mit 7 Urwirbelpaaren. 3°. Das Entoderm. Z Anat Entw Gesch. 1930;93:386–428.Google Scholar
  15. 15.
    Politzer G. Die Keimbahn des Menshen. Z Anat EntwGesch. 1933;100:331–6.Google Scholar
  16. 16.
    Witschi E. Migration of germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr Embryol Carnegie Inst. 1948;209:67–80.Google Scholar
  17. 17.
    McKay DG, Hertig AT, Adams EC, Danziger S. Histochemical observations on the germ cells of human embryos. Anat Rec. 1953;17:201–19.Google Scholar
  18. 18.
    Kellokumpu-Lehtinen PL, Söderström KO. Occurrence of nuage in fetal human germ cells. Cell Tissue Res. 1978;194:171–7.PubMedGoogle Scholar
  19. 19.
    Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H. Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development. 2003;130:859–71.PubMedGoogle Scholar
  20. 20.
    Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A. Mouse Maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell. 2008;15:285–97.PubMedGoogle Scholar
  21. 21.
    Luckett WP. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat. 1978;152:59–97.PubMedGoogle Scholar
  22. 22.
    Rajpert-De Meyts E, Hanstein R, Jørgensen N, Graem N, Vogt PH, Skakkebaek NE. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod. 2004;19:1338–44.PubMedGoogle Scholar
  23. 23.
    Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod. 2008;23:589–99.PubMedGoogle Scholar
  24. 24.
    Perrett RM, Turnpenny L, Eckert JJ, O’Shea M, Sonne SB, Cameron SI, Wilson DI, Rajpert-De Meyts E, Hanley NA. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod. 2008;78:852–8.PubMedGoogle Scholar
  25. 25.
    HØyer PE, Byskov AG, MØllgard K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol. 2005;234:1–10.PubMedGoogle Scholar
  26. 26.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95:13726–31.PubMedGoogle Scholar
  27. 27.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshal VS, Jones JM. Blastocysts embryonic stem cell lines derived from human. Science. 1998;282:1145–7.PubMedGoogle Scholar
  28. 28.
    Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113:5–10.PubMedGoogle Scholar
  29. 29.
    Hua J, Yu H, Liu S, Dou Z, Sun Y, Jing X, Yang C, Lei A, Wang H, Gao Z. Derivation and characterization of human embryonic germ cells: serum-free culture and differentiation potential. Reprod Biomed Online. 2009;19:238–49.PubMedGoogle Scholar
  30. 30.
    Johkura K, Cui L, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K. Cytochemical and ultrastructural characterization of growing colonies of human embryonic stem cells. J Anat. 2004;205:247–55.PubMedGoogle Scholar
  31. 31.
    Liu S, Liu H, Tang S, Pan Y, Ji K, Ning H, Wang S, Qi Z, Li L. Characterization of stage-specific embryonic antigen −12 expression during early stages of human embryogenesis. Oncol Rep. 2004;12:1251–6.PubMedGoogle Scholar
  32. 32.
    Liu S, Liu H, Pan Y, Tang S, Xiong J, Hui N, Wang S, Qi Z, Li L. Human embryonic germ cells isolation from early stages of post-implantation embryos. Cell Tissue Res. 2004;318:525–31.PubMedGoogle Scholar
  33. 33.
    Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells. 2003;21:598–609.PubMedGoogle Scholar
  34. 34.
    Park JH, Kim SJ, Lee JB, Song JM, Kim CG, Roh 2nd S, Yoo HS. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells. Mol Cells. 2004;17:309–15.PubMedGoogle Scholar
  35. 35.
    Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells. 2002;20:329–37.PubMedGoogle Scholar
  36. 36.
    Shevinsky LH, Knowles BB, Damjanov J, Solter D. Monoclonal antibodies to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 1981;30:697–704.Google Scholar
  37. 37.
    Soncin F, Ward CM. The Function of E-cadherin in stem cell pluripotency and self-renewal. Genes. 2011;2:229–59.Google Scholar
  38. 38.
    Giesberts AN, Duran C, Morton IN, Pigott C, White SJ, Andrews PW. The expression and function of cadherin-mediated cell-to-cell adhesion in human embryonal carcinoma cells. Mech Dev. 1999;83:115–25.PubMedGoogle Scholar
  39. 39.
    Gordeeva OF, Krasnikova NY, Larionova AV, Krylova TA, Polyanskaya GG, Zinov’eva RD, Gulyaev DV, Pryzhkova MV, Nikol’skii NN, Khrushchov NG. Analysis of expression of genes specific for pluripotent and primordial germ cells in human and mouse embryonic stem cell lines. Dokl Biol Sci. 2006;406:115–8.PubMedGoogle Scholar
  40. 40.
    Andrews PW, Casper J, Damjanov I, Duggan-Keen M, Giwercman A, Hata J, von Keitz A, Looijenga L, Millan JL, Oosterhuis JW, Pera MF, Sawada M, Schmoll HJ, Skakkebaek NE, van Putten W, Stern P. Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int J Cancer. 1996;66:806–16.PubMedGoogle Scholar
  41. 41.
    Badcock G, Pigott C, Goepel J, Andrews PW. The human embryonal carcinoma marker antigen TRA-1–60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 1999;59:4715–9.PubMedGoogle Scholar
  42. 42.
    Roach S, Cooper S, Bennett W, Pera MF. Cultured cell lines from human teratomas: windows into tumour growth and differentiation and early human development. Eur Urol. 1993;23:82–7.PubMedGoogle Scholar
  43. 43.
    Andrews PW. Teratocarcinomas and human embryology: pluripotent human EC cell lines. APMIS. 1998;106:158–67.PubMedGoogle Scholar
  44. 44.
    Clark AT, Rodriguez R, Bodnar M, Abeyta M, Turek P, Firpo M, Reijo Pera RA. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hot-spot for teratocarcinoma. Stem Cells. 2004;22:169–79.PubMedGoogle Scholar
  45. 45.
    Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells. 2004;22:169–79.PubMedGoogle Scholar
  46. 46.
    Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn. 2004;230:187–98.PubMedGoogle Scholar
  47. 47.
    Clark AT, Bodnar MS, Fox MS, Rodriquez RT, Abeyta MJ, Firpo MT, Reijo Pera RA. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet. 2004;13:727–39.PubMedGoogle Scholar
  48. 48.
    Julaton VTA, Reijo-Pera RA. NANOS3 function in human germ cell development. Hum Mol Genet. 2011;20:2238–50.PubMedGoogle Scholar
  49. 49.
    Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008;26:1931–8.PubMedGoogle Scholar
  50. 50.
    Adachi K, Suemori H, Yasuda S, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 2010;15:455–70.PubMedGoogle Scholar
  51. 51.
    Stevanovic M. Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol Biol Rep. 2003;30:127–32.PubMedGoogle Scholar
  52. 52.
    Payer B, Soitou M, Barton SC, Tresher R, Dixon JP, Zahan D, Colledge WH, Carlton MB, Nakano T, Surani MA. Stella is a maternal effect gene required for normal early development in mice. Curr Biol. 2003;13:2110–7.PubMedGoogle Scholar
  53. 53.
    Bowles J, Teasdale RP, Jamesa K, Koopmana P. Dpp a3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenet Genome Res. 2003;101:261–5.PubMedGoogle Scholar
  54. 54.
    Eckert† D, Biermann K, Nettersheim D, Gillis Ad JM, Steger K, Jäck HN, Müller AM, Looijenga LHJ, Schorle H. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol. 2008;8:106–14.PubMedGoogle Scholar
  55. 55.
    Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A. 2000;97:9585–90.PubMedGoogle Scholar
  56. 56.
    Anderson RA, Fulton N, Cowan G, Coutts G, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol. 2007;7:136–44.PubMedGoogle Scholar
  57. 57.
    Zeeman AM, Stoop H, Boter M, Gillis Ad JM, Castrillon DH, Oosterhuis JW, Looijenga LHJ. VASA is a specific marker for both normal and malignant human germ cells. Lab Invest. 2002;82:159–66.PubMedGoogle Scholar
  58. 58.
    Ezeh UI, Turek PJ, Renee MD, Reijo-Pera RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.PubMedGoogle Scholar
  59. 59.
    Leroy X, Augusto D, Leteurtre E, Gosselin B. CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem. 2002;50:283, 290.PubMedGoogle Scholar
  60. 60.
    Bucay N, Yebra M, Cirulli V, Afrikanova I, Kaido T, Hayek A, Montgomery AMP. A Novel approach for the derivation of putative primordial germ cells and Sertoli cells from human embryonic stem cells. Stem Cells. 2008;27:68–77.Google Scholar
  61. 61.
    D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetg EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.PubMedGoogle Scholar
  62. 62.
    Gilbert DC, Chandler I, McIntyre A, Goddard NC, Gabe R, Huddart RA, Shipley J. Clinical and biological significance of CXCL12 and CXCR4 expression in adult testes and germ cell tumours of adults and adolescents. J Pathol. 2009;217:94–102.PubMedGoogle Scholar
  63. 63.
    Western P, Maldonado-Saldivia J, van den Bergen J, Hajkova P, Saitou M, Barton S, Surani MA. Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines. Stem Cells. 2005;23:1436–42.PubMedGoogle Scholar
  64. 64.
    Panula S, Medrano JV, Kee K, Bergstrom R, Nguyen HN, Byers B, Wilson KD, Wu JC, Simon C, Hovatta O, Reijo Pera RA. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet. 2010;20:752–62.PubMedGoogle Scholar
  65. 65.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Meltonv DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.PubMedGoogle Scholar
  66. 66.
    Chen H, Kuo H, Chien C, Shun C, Yao Y, Ip P, Chuang C, Wang C, Yang Y, Ho H. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod. 2007;22:567–77.PubMedGoogle Scholar
  67. 67.
    Tilgner K, Atkinson S, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells. 2008;26:3075–85.PubMedGoogle Scholar
  68. 68.
    Tilgner K, Atkinson SA, Yung S, Golebiewska A, Stojkovic M, Moreno R, Lako M, Armstrong L. Expression of GFP under the control of the RNA helicase VASAArmstrong L. Expression of GFP under the control of the RNA helicase VASA permits FACS isolation of human primordial germ cells at different stages of development. Stem Cells. 2010;28:84–92.PubMedGoogle Scholar
  69. 69.
    Kee K, Gonsalves J, Clark A, Reijo-Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 2006;15:831–7.PubMedGoogle Scholar
  70. 70.
    Kee K, Angeles V, Flores M, Nguyen H, Reijo-Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation. Nature. 2009;462:222–5.PubMedGoogle Scholar
  71. 71.
    Park TS, Galic Z, Conway AE, Lindgren A, van Handel BJ, Magnusson M, Richter L, Teitell MA, Mikkola HK, Lowry WE, Plath K, Clark AT. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009;27:783–95.PubMedGoogle Scholar
  72. 72.
    West F, Machacek D, Boyd N, Pandiyan K, Robbins K, Stice S. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells. 2008;26:2768–76.PubMedGoogle Scholar
  73. 73.
    Haston KM, Tung JY, Reijo-Pera RA. Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One. 2009;4:e5654.PubMedGoogle Scholar
  74. 74.
    Gill ME, Hu YC, Lin Y, Page DC. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci U S A. 2011;108:7443–8.PubMedGoogle Scholar
  75. 75.
    Suzuki A, Tsuda M, Saga Y. Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development. 2007;134:77–83.PubMedGoogle Scholar
  76. 76.
    Falin LI. The development of genital glands and the origin of germ cells in human embryogenesis. Acta Anat. 1969;72:195–232.PubMedGoogle Scholar
  77. 77.
    Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells. Anat Rec. 1977;188:315–29.PubMedGoogle Scholar
  78. 78.
    Møllgard HK, Jespersen A, Lutterodt MC, Andersen CY, Høyer PE, Byskov AG. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Mol Hum Reprod. 2010;16:621–31.PubMedGoogle Scholar
  79. 79.
    Makabe S, Nottola SA, Motta PM. Life history of the human female germ cell: Ultrastructural aspects. In: Van Blerkom J, Motta PM, editors. Ultrastructure of human gametogenesis and early embryogenesis. Boston: Kluwer Academic Publishers; 1989. p. 33–60.Google Scholar
  80. 80.
    Kuwana T, Fujimoto T. Active locomotion of human primordial germ cells in vitro. Anat Rec. 1983;205:21–6.PubMedGoogle Scholar
  81. 81.
    Alvarez-Buylla A, Merchant-Larios H. Mouse primordial germ cells use fibronectin as a substrate for migration. Exp Cell Res. 1986;165:362–8.PubMedGoogle Scholar
  82. 82.
    Stott D, Wylie CC. Invasive behaviour of mouse primordial germ cells in vitro. J Cell Sci. 1986;86:133–44.PubMedGoogle Scholar
  83. 83.
    Donovan PJ, Stott D, Cairns LA, Heasman J, Wylie CC. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell. 1986;44:831–8.PubMedGoogle Scholar
  84. 84.
    Molyneaux KA, Stallock J, Schaible K, Wylie C. Time-lapse analysis of primordial germ cells in the mouse. J Exp Zool. 2001;134:207–37.Google Scholar
  85. 85.
    Freman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction. 2003;125:635–43.Google Scholar
  86. 86.
    Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from ­different organisms. Nat Rev Mol Cell Biol. 2010;11:37–49.PubMedGoogle Scholar
  87. 87.
    Pereda J, Zorn T, Soto-Suazo M. Migration of human and mouse primordial germ cells and colonization of the developing ovary: an ultrastructural and cytochemical study. Microsc Res Tech. 2006;69:386–95.PubMedGoogle Scholar
  88. 88.
    De Felici M, Pesce M, Giustiniani Q, Di Carlo A. In vitro adhesiveness of mouse primordial germ cells to cellular and extracellular matrix component substrata. Microsc Res Tech. 1998;43:258–64.PubMedGoogle Scholar
  89. 89.
    Anderson R, Fässler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development. 1999;126:1655–64.PubMedGoogle Scholar
  90. 90.
    Godin I, Wylie CC, Heasman J. Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development. 1990;108:357–63.PubMedGoogle Scholar
  91. 91.
    Farini D, La Sala G, Tedesco M, De Felici M. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol. 2007;306:572–83.PubMedGoogle Scholar
  92. 92.
    Godin I, Wylie CC. TGFβ inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development. 1991;113:1451–7.PubMedGoogle Scholar
  93. 93.
    Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung TC, Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002;111:647–59.PubMedGoogle Scholar
  94. 94.
    Goto T, Salpekar A, Monk M. Expression of testis-specific member of the olfactory receptor gene family in human primordial germ cells. Mol Hum Reprod. 2001;7:553–8.PubMedGoogle Scholar
  95. 95.
    Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod. 2000;15:129–47.PubMedGoogle Scholar
  96. 96.
    Upadyay S, Zamboni L. Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci U S A. 1982;79:6584–8.Google Scholar
  97. 97.
    Zamboni L, Upadhyay S. Germ cell differentiation in mouse adrenal glands. J Exp Zool. 1983;228:173–93.PubMedGoogle Scholar
  98. 98.
    Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development. 1993;118:1089–94.PubMedGoogle Scholar
  99. 99.
    Stallock J, Molyneaux K, Schaivle K, Knudson CM, Wylie C. The pro-apoptotic gene Bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development. 2003;130:6589–97.PubMedGoogle Scholar
  100. 100.
    Gobel U, Schneider DT, Calaminus G, Haas RJ, Schmidt P, Harms D. Germ-cell tumors in childhood and adolescence. GPOH MAKEI and the MAHO study groups. Ann Oncol. 2000;11:263–71.PubMedGoogle Scholar
  101. 101.
    Schneider DT, Schuster AE, Fritsch MK, Hu J, Olson T, Lauer S, Gobel U, Perlman EJ. The pediatric oncology group and German pediatric germ cell tumor study group. Multipoint imprinting analysis indicates a common precursor cell for gonadal and non gonadal pediatric germ cell tumors. Cancer Res. 2001;61:7268–76.PubMedGoogle Scholar
  102. 102.
    Runyan C, Gu Y, Shoemaker A, Looijenga L, Wylie CC. The distribution and behavior of extragonadal primordial germ cells in Bax mutant mice suggest a novel origin for sacrococcygeal germ cell tumors. Int J Dev Biol. 2008;52:333–44.PubMedGoogle Scholar
  103. 103.
    Kuwana T. Migration of avian primordial germ cells toward the gonadal anlage. Dev Grow Differ. 1993;35:237–43.Google Scholar
  104. 104.
    Francavilla S, Cordeschi G, Properzi G, Conbcordian N, Cappa F, Pozzi V. Ultrastructure of fetal human gonad before sexual differentiation and during early testicular and ovarian development. J Submicrosc Cytol Pathol. 1990;22(3):398–400.Google Scholar
  105. 105.
    Wartenberg H. Germ cell migration induced and guided by somatic cell interactions. In: Hilsher E, editor. Problems of the Keimbahn, Bibliotheca anatomica, vol. 24. Basel: Karger; 1983. p. 93–111.Google Scholar
  106. 106.
    Baker TG, Franchi LL. The fine structure of oogonia and oocytes in human ovaries. J Cell Sci. 1967;2:213–24.PubMedGoogle Scholar
  107. 107.
    Motta PM, Makabe S. Germ cells in the ovarian surface during fetal development. A three-dimensional microanatomical study by scanning electron microscopy. J Submicrosc Cytol. 1986;18:271–90.PubMedGoogle Scholar
  108. 108.
    Ruby JR, Dyer RF, Gasser RF, Skalko RG. Intercellular connections between germ cells in the developing human ovary. Cell Tissue Res. 1970;105:252–8.Google Scholar
  109. 109.
    Gondos B. Germ cell differentiation and intercellular bridges. In: Van Blerkom J, Motta PM, editors. Ultrastructure of reproduction. Gametogenesis, fertilization and embryogenesis. The Hague: Martinus Nijhoff Publishers; 1984. p. 31–45.Google Scholar
  110. 110.
    Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B. 1963;158:417–33.PubMedGoogle Scholar
  111. 111.
    Kurilo LF. Oogenesis in antenatal development in man. Hum Genet. 1981;57:6–92.Google Scholar
  112. 112.
    Holstein AF, Schutte B, Becker H, Hartniann NI. Morphology of normal and malignant germ cells. Int J Androl. 1987;10:1–18.PubMedGoogle Scholar
  113. 113.
    Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortes L, McElreavey K, Lindsay S, Robson S, Bullen P, Ostrer H, Wilson DI. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.PubMedGoogle Scholar
  114. 114.
    Wartenberg H. Differentiation and development of the testis. In: Burger H, de Kreseter DM, editors. The testis. 2nd ed. New York: Raven Press; 1981. p. 39–81.Google Scholar
  115. 115.
    Gaskell TL, Esnal A, Robinson LL, Anderson RA, Saunders PT. Immunohistochemical profiling of germ cells within the human fetal testis: identification of three subpopulations. Biol Reprod. 2004;71:2012–21.PubMedGoogle Scholar
  116. 116.
    Fukuda T, Hedinger C, Groscurth P. Ultrastructure of developing germ cells in the fetal human testis. Cell Tissue Res. 1975;161:55–70.PubMedGoogle Scholar
  117. 117.
    Scaldaferri ML, Fera S, Grisanti L, Sanchez M, Stefanini M, De Felici M, Vicini E. Identification of side population cells in mouse primordial germ cells and prenatal testis. Int J Dev Biol. 2011;55:209–14.PubMedGoogle Scholar
  118. 118.
    Mamsen LS, Lutterodt MC, Andersen E, Byskov AG, Andersen CY. Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: analysis of six published studies. Hum Reprod. 2011;26:2140–5.PubMedGoogle Scholar
  119. 119.
    Bendsen E, Byskov AG, Laursen SB, Larsen HP, Andersen CY, Westergaard LG. Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum Reprod. 2003;18:13–8.PubMedGoogle Scholar
  120. 120.
    Bendsen E, Byskov AG, Andersen CY, Westergaard LG. Number of germ cells and somatic cells in human fetal ovaries during the first weeks after sex differentiation. Hum Reprod. 2006;21:30–5.PubMedGoogle Scholar
  121. 121.
    O’Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, Fowler PA. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocrinol Metab. 2007;92:4792–801.PubMedGoogle Scholar
  122. 122.
    Lutterodt MC, Sørensen KP, Larsen KB, Skouby SO, Andersen CY, Byskov AG. The number of oogonia and somatic cells in the human female embryo and fetus in relation to whether or not exposed to maternal cigarette smoking. Hum Reprod. 2009;24:2558–66.PubMedGoogle Scholar
  123. 123.
    Fowler PA, Flannigan S, Mathers A, Gillanders K, Lea RG, Wood MJ, Maheshwari A, Bhattacharya S, Collie-Duguid ES, Baker PJ, Monteiro A, O’Shaughnessy PJ. Gene expression analysis of human fetal ovarian primordial follicle formation. J Clin Endocrinol Metab. 2009;94:1427–35.PubMedGoogle Scholar
  124. 124.
    Mamsen LS, Lutterodt MC, Andersen EW, Skouby SO, Sørensen KP, Andersen CY, Byskov AG. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells. Hum Reprod. 2010;25:2755–61.PubMedGoogle Scholar
  125. 125.
    Hiller M, Liu C, Blumenthal PD, Gearhart JD, Kerr CL. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation. Stem Cells Dev. 2011;20:351–61.PubMedGoogle Scholar
  126. 126.
    Grimaldi P, Rossi P, Dolci S, Ripamonti CB, Geremia R. Molecular genetics of male infertility: stem cell factor/c-kit system. Am J Reprod Immunol. 2002;48:27–33.PubMedGoogle Scholar
  127. 127.
    Galan JJ, De Felici M, Buch B, Rivero MC, Segura A, Royo JL, Cruz N, Real LM, Ruiz A. Association of genetic markers within the KIT and KITLG genes with human male infertility. Hum Reprod. 2006;21:3185–92.PubMedGoogle Scholar
  128. 128.
    de Kretser DM, Damjanov I. The 4th Copenhagen workshop on carcinoma in situ and cancer of the testis: concluding remarks. APMIS. 1998;106:259–63.PubMedGoogle Scholar
  129. 129.
    Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, van Dekken H, Honecker F, Bokemeyer C, Perlman EJ, Schneider DT, Kononen J, Sauter G, Oosterhuis JW. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003;63:224422–50.Google Scholar
  130. 130.
    D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.PubMedGoogle Scholar
  131. 131.
    Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis. 2000;27:117–23.PubMedGoogle Scholar
  132. 132.
    Leffler A, Ludwig M, Schmitt O, Busch LC. Germ cell migration and early development of the gonads in the trisomy 16 mouse – an animal model for Down’s syndrome. Ann Anat. 1999;181:247–52.PubMedGoogle Scholar
  133. 133.
    Goto T, Adjaye J, Rodeck CH, Monk M. Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. Mol Hum Reprod. 1999;5:851–60.PubMedGoogle Scholar
  134. 134.
    Goto T, Holding C, Daniels R, Salpekar A, Monk M. Gene expression studies on human primordial germ cells and preimplantation embryos. Ital J Anat Embryol. 2001;106:119–27.PubMedGoogle Scholar
  135. 135.
    Turnpenny L, Spalluto CM, Perrett RM, O’Shea M, Hanley KP, Cameron IT, Wilson DI, Hanley NA. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells. 2006;24:212–20.PubMedGoogle Scholar
  136. 136.
    Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A. 2002;99:10599–604.PubMedGoogle Scholar
  137. 137.
    Swales AKE, Spears N. Genomic imprinting and reproduction. Reproduction. 2005;130:389–99.PubMedGoogle Scholar
  138. 138.
    De Felici M. Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution. Stem Cells Int. 2011;2011:425863.PubMedGoogle Scholar
  139. 139.
    Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA. Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol. 1998;207:551–61.PubMedGoogle Scholar
  140. 140.
    Humphreys D, Eggan K, Akutsu H, Hochedlinger K, Rideout W, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenic instability in ES cells and cloned mice. Science. 2001;293:95–6.Google Scholar
  141. 141.
    Kim KP, Thurston A, Mummery C, Ward-van Oostwaard D, Priddle H, Allegrucci C, Denning C, Young L. Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Res. 2007;17:1731–42.PubMedGoogle Scholar
  142. 142.
    Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development. 1994;2:3197–204.Google Scholar
  143. 143.
    Shovlin TC, Durcova-Hills G, Surani A, McLaren A. Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol. 2008;313:674–81.PubMedGoogle Scholar
  144. 144.
    Stevens LC. Origin of testicular teratomas from primordial germ cells in mice. J Natl Cancer Inst. 1967;38:549–52.PubMedGoogle Scholar
  145. 145.
    Grigor KM, Wylie CC. The origin and biology of CIS cells: general discussion. APMIS. 1998;106:221–4.PubMedGoogle Scholar
  146. 146.
    Bosl GJ, Ilson DH, Rodriguez E, Motzer RJ, Reuter VE, Chaganti RSK. Clinical relevance of the i(12p) chromosome in germ cell tumors. J Natl Cancer Inst. 1993;86:349–55.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Section of Histology and Embryology, Department of Public Health and Cell BiologyUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations