Attitude and Position Tracking

Abstract

Several applications require the tracking of attitude and position of a body based on velocity data. It is tempting to use direction cosine matrices (DCM), for example, to track attitude based on angular velocity data, and to integrate the linear velocity data separately in a suitable frame. In this chapter we make the case for using bivectors as the attitude tracking method of choice since several features make their performance and flexibility superior to that of DCMs, Euler angles or even rotors. We also discuss potential advantages in using CGA to combine the integration of angular and linear velocities in one step, as the features that make bivectors attractive for tracking rotations extend to bivectors that represent general displacements.

References

  1. 1.
    Bar-Itzhack, I.Y.: Navigation computation in terrestrial strapdown inertial navigation systems. IEEE Trans. Aerosp. Electron. Syst. 13, 679–689 (1977) CrossRefGoogle Scholar
  2. 2.
    Bar-Itzhack, I.Y.: Extension of Eulers theorem to n-dimensional spaces. IEEE Trans. Aerosp. Electron. Syst. 25, 903–909 (1989) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bortz, J.E.: A new mathematical formulation for strapdown inertial navigation. IEEE Trans. Aerosp. Electron. Syst. 7, 61–66 (1971) CrossRefGoogle Scholar
  4. 4.
    Goodman, L.E., Robinson, A.R.: Effect of finite rotations on gyroscopic sensing devices. J. Appl. Mech. 210–213 (June 1958) Google Scholar
  5. 5.
    Gusinsky, V.Z., Lesyuchevsky, V.M., Litmanovich, Yu.A.: New procedure for deriving optimized strapdown attitude algorithms. AIAA J. Guid. Control Dyn. 20, 673–680 (1997) MATHCrossRefGoogle Scholar
  6. 6.
    Hestenes, D.: New Foundations for Classical Mechanics. Fundamental Theories of Physics. Springer, Berlin (1999) MATHGoogle Scholar
  7. 7.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984) MATHGoogle Scholar
  8. 8.
    Ignani, M.B.: On the orientation vector differential equation in strapdown inertial navigation systems. IEEE Trans. Aerosp. Electron. Syst. 30, 1076–1081 (1994) CrossRefGoogle Scholar
  9. 9.
    Ignani, M.B.: New procedure for deriving optimized strapdown attitude algorithms. AIAA J. Guid. Control Dyn. 20, 673–680 (1997) CrossRefGoogle Scholar
  10. 10.
    Jiang, Y.F., Lin, Y.P.: On the rotation vector differential equation. IEEE Trans. Aerosp. Electron. Syst. 27, 181–183 (1991) CrossRefGoogle Scholar
  11. 11.
    Jiang, Y.F., Lin, Y.P.: Improved strapdown coning algorithms. IEEE Trans. Aerosp. Electron. Syst. 28, 448–490 (1992) CrossRefGoogle Scholar
  12. 12.
    Miller, R.: A new strapdown attitude algorithm. AIAA J. Guid. Control Dyn. 6, 287–291 (1983) CrossRefGoogle Scholar
  13. 13.
    Nazaroff, G.: The orientation vector differential equation. AIAA J. Guid. Control Dyn. 2, 351–352 (1979) CrossRefGoogle Scholar
  14. 14.
    Onunka, C., Bright, G.: A study on Direction Cosine Matrix (DCM) for autonomous navigation. In: CAD/CAM Robotics and Factories of the Future (2010) Google Scholar
  15. 15.
    Phillips, W.F., Haily, C.E.: Review of attitude representations used for aircraft kinematics. J. Aircr. 38, 718–737 (2001) CrossRefGoogle Scholar
  16. 16.
    Savage, P.: Strapdown inertial navigation integration algorithm design, part 1: Attitude algorithms. AIAA J. Guid. Control Dyn. 21, 19–28 (1998) MATHCrossRefGoogle Scholar
  17. 17.
    Titterton, D., Weston, J.: Strapdown Inertial Navigation Technology. 2nd revised edn. IEEE Press, New York (2005) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.The Council for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
  2. 2.Engineering DepartmentCambridge UniversityCambridgeUK

Personalised recommendations