Mitochondrial Membrane Potential and Dynamics

  • Jorge M. A. OliveiraEmail author


Mitochondria are essential for neuronal homeostasis and their dysfunction causes neurodegeneration. Mitochondrial bioenergetics and dynamics ensure ATP supply and Ca2+ buffering throughout neuronal processes, regulating and being reciprocally modulated by synaptic activity. At the core of mitochondrial activity resides the ability to generate a proton motive force, whose major component is the mitochondrial membrane potential (Δψm). This key bioenergetic parameter changes dynamically in living cells in response to metabolic and ionic changes affecting respiratory chain activity. In the absence of dysfunction, transient decreases in Δψm by competing mitochondrial functions (e.g., ATP synthesis or Ca2+ buffering) are readily restored. Even when dysfunctional, mitochondria may maintain Δψm by FoF1-ATPase reversal, thus highlighting the value of dynamic Δψm recordings in response to controlled stimuli. Mitochondrial biogenesis requires Δψm for import of nuclear-encoded proteins. Δψm is necessary for mitochondrial fusion, but not fission. The latter often yields depolarized mitochondria, which when unable to reestablish Δψm are excluded from fusion and likely targeted for autophagy (mitophagy). Mitochondrial dynamic movement and docking are also associated with changes in Δψm, which undergoes local modulation in response to neuronal activity. Mitochondrial diseases may stem from mutations in nuclear or mitochondrial DNA (mtDNA). Mitochondria in neurons with severe mtDNA mutations were shown to hold Δψm by reverse FoF1-ATPase activity, which may theoretically allow complementation by fusion in a heteroplasmic context, and/or allow clonal expansion by preventing exclusion from the fusion pool and mitophagy. In Huntington’s disease and in familial forms of Alzheimer and Parkinson’s diseases, there is mounting evidence for changes in mitochondrial dynamics and Δψm.


Membrane potential Dynamics Biogenesis Fusion Fission Trafficking Mitophagy 


  1. 1.
    Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007;292(2):C641–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80(1):315–60.PubMedGoogle Scholar
  4. 4.
    Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3(1):35–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Oliveira JM. Techniques to investigate neuronal mitochondrial function and its pharmacological modulation. Curr Drug Targets. 2011;12(6):762–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Wikstrom JD, Twig G, Shirihai OS. What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol. 2009;41(10):1914–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 2000;23(4):166–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen H, Chan DC. Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):R169–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777(9):1092–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Mokranjac D, Neupert W. Energetics of protein translocation into mitochondria. Biochim Biophys Acta. 2008;1777(7–8):758–62.PubMedGoogle Scholar
  12. 12.
    Medeiros DM. Assessing mitochondria biogenesis. Methods. 2008;46(4):288–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Amiri M, Hollenbeck PJ. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol. 2008;68(11):1348–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta. 2010;1802(1):228–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Kowald A, Jendrach M, Pohl S, Bereiter-Hahn J, Hammerstein P. On the relevance of mitochondrial fusions for the accumulation of mitochondrial deletion mutants: a modelling study. Aging Cell. 2005;4(5):273–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Sato A, Nakada K, Hayashi J. Mitochondrial dynamics and aging: mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA. Biochim Biophys Acta. 2006;1763(5–6):473–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Reeve AK, Krishnan KJ, Turnbull D. Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci. 2008;1147:21–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.PubMedCrossRefGoogle Scholar
  19. 19.
    Mattenberger Y, James DI, Martinou JC. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett. 2003;538(1–3):53–9.PubMedCrossRefGoogle Scholar
  20. 20.
    De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol. 2005;15(7):678–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Chang DT, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 2006;80(5):241–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Mironov SL. Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol. 2009;41(10):2005–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61(4):541–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA. 2008;105(52):20728–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang X, Schwarz TL. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136(1):163–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Tolkovsky AM. Mitophagy. Biochim Biophys Acta. 2009;1793(9):1508–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Bauer MF, Neupert W. Import of proteins into mitochondria: a novel pathomechanism for progressive neurodegeneration. J Inherit Metab Dis. 2001;24(2):166–80.PubMedCrossRefGoogle Scholar
  29. 29.
    MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta. 2007;1772(5):509–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahting U, Floss T, Uez N, Schneider-Lohmar I, Becker L, Kling E, et al. Neurological phenotype and reduced lifespan in heterozygous Tim23 knockout mice, the first mouse model of defective mitochondrial import. Biochim Biophys Acta. 2009;1787(5):371–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Legros F, Lombes A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 2002;13(12):4343–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Sauvanet C, Duvezin-Caubet S, di Rago JP, Rojo M. Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin Cell Dev Biol. 2010;21(6):558–65. Epub Dec 16, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 2005;6(9):853–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Guillery O, Malka F, Landes T, Guillou E, Blackstone C, Lombes A, et al. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell. 2008;100(5):315–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006;25(13):2966–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci. 2004;117(Pt 13):2791–804.PubMedCrossRefGoogle Scholar
  39. 39.
    Verburg J, Hollenbeck PJ. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci. 2008;28(33):8306–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Rintoul GL, Bennett VJ, Papaconstandinou NA, Reynolds IJ. Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem. 2006;97(3):800–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF. Mechanisms of mitochondria-neurofilament interactions. J Neurosci. 2003;23(27):9046–58.PubMedGoogle Scholar
  42. 42.
    Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta. 2010;1802(1):143–50.PubMedCrossRefGoogle Scholar
  43. 43.
    MacAskill AF, Kittler JT. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 2010;20(2):102–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Cai Q, Sheng ZH. Mitochondrial transport and docking in axons. Exp Neurol. 2009;218(2):257–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Turnbull HE, Lax NZ, Diodato D, Ansorge O, Turnbull DM. The mitochondrial brain: from mitochondrial genome to neurodegeneration. Biochim Biophys Acta. 2010;1802(1):111–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Kwong JQ, Beal MF, Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem. 2006;97(6):1659–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Kraytsberg Y, Nekhaeva E, Bodyak NB, Khrapko K. Mutation and intracellular clonal expansion of mitochondrial genomes: two synergistic components of the aging process? Mech Ageing Dev. 2003;124(1):49–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Nicholas A, Kraytsberg Y, Guo X, Khrapko K. On the timing and the extent of clonal expansion of mtDNA deletions: evidence from single-molecule PCR. Exp Neurol. 2009;218(2):316–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong LJ. Diagnostic challenges of mitochondrial DNA disorders. Mitochondrion. 2007;7(1–2):45–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Ono T, Isobe K, Nakada K, Hayashi JI. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet. 2001;28(3):272–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Ono T, Kasahara Y, Nakada K, Hayashi JI. Presence of interaction but not complementation between human mtDNAs carrying different mutations within a tRNA(Leu(UUR)) gene. Biochem Biophys Res Commun. 2004;314(4):1107–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Stewart JB, Freyer C, Elson JL, Larsson NG. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet. 2008;9:657–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 2008;6(1):e10.PubMedCrossRefGoogle Scholar
  54. 54.
    Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science. 2008;319(5865):958–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R, Whittington M, Enriquez JA, et al. Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif. 2009;42(4):413–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Abramov AY, Smulders-Srinivasan TK, Kirby DM, Acin-Perez R, Enriquez JA, Lightowlers RN, et al. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain. 2010;133(Pt 3):797–807.PubMedCrossRefGoogle Scholar
  57. 57.
    Trevelyan AJ, Kirby DM, Smulders-Srinivasan TK, Nooteboom M, Acin-Perez R, Enriquez JA, et al. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain. 2010;133(Pt 3):787–96.PubMedCrossRefGoogle Scholar
  58. 58.
    Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304(5669):448–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Bueler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol. 2009;218(2):235–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Oliveira JM. Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum. J Neurochem. 2010;114(1):1–12.PubMedGoogle Scholar
  61. 61.
    Li XJ, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington’s disease. Biochim Biophys Acta. 2010;1802(1):62–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Oliveira JM. Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr. 2010;42(3):227–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem. 2009;109 Suppl 1:153–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson’s disease. Exp Neurol. 2009;218(2):247–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci. 2002;5(8):731–6.PubMedGoogle Scholar
  66. 66.
    Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127(1):59–69.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang H, Lim PJ, Karbowski M, Monteiro MJ. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet. 2009;18(4):737–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000;20(19):7268–78.PubMedGoogle Scholar
  69. 69.
    Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Oliveira JM, Chen S, Almeida S, Riley R, Goncalves J, Oliveira CR, et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci. 2006;26(43):11174–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Oliveira JM, Jekabsons MB, Chen S, Lin A, Rego AC, Goncalves J, et al. Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J Neurochem. 2007;101(1):241–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA. 2008;105(49):19318–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Ward MW, Concannon CG, Whyte J, Walsh CM, Corley B, Prehn JH. The amyloid precursor protein intracellular domain (AICD) disrupts actin dynamics and mitochondrial bioenergetics. J Neurochem. 2010;113(1):275–84.PubMedCrossRefGoogle Scholar
  74. 74.
    Rui Y, Tiwari P, Xie Z, Zheng JQ. Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci. 2006;26(41):10480–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, et al. Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol. 2007;66(6):525–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.REQUIMTE, Department of Drug Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal

Personalised recommendations