Lithium-Based Batteries for Efficient Energy Storage: Nanotechnology and Its Implications

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Demand for energy overshadows all other problems mankind will face during the next half century. With more countries achieving higher economic development, this demand will continue rising dramatically. Plaguing the energy demand is our persistent dependence on fossil fuels and its related environmental effects. Renewable sources of energy are the most possible option to reduce this dependence. Since many green energy sources cannot provide consistent power at all times, efficient storage and transmission of generated energy is necessary. For this we require high-energy density devices that are rechargeable and cost-efficient. Although the development of new energy storage technology should continue, current high- energy density lithium-ion batteries should also be researched in great detail to improve their performance and widespread use. Toward this aim, we review the historic and recent development of cathode, anode and electrolyte materials in detail. We also review the mechanisms of charge transport and phase stability in these compounds. The use of nanotechnology has already found great influence in modifying these materials towards higher energy density and greater reliability. Nanotechnologies will go on to provide breakthroughs not only in better materials, but also better battery design for energy storage, such as in thin film and lithium-air batteries.

References

  1. 1.
    Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3:174–189MathSciNetGoogle Scholar
  2. 2.
    Greatbalch W, Lee JH, Schneider AA et al (1971) Solid-state lithium battery. A new improved chemical power source for implantable cardiac pacemakers. IEEE Trans Biomed Eng 18:317–324Google Scholar
  3. 3.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301Google Scholar
  4. 4.
    Whittingham MS (1976) Electrical energy storage and intercalation. Chem Sci 192:1126–1127Google Scholar
  5. 5.
    Broadhead J, DiSalvo FJ, Trumbore FA, Non-aqueous battery using chalcogenide electrode. US Patent 3864167Google Scholar
  6. 6.
    Delmas C, Doumerc JP et al (1994) The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69:257–264Google Scholar
  7. 7.
    Howing J, Gustafsson T, Thomas JO (2003) Low-temperature structure of V6O13. Acta Crystallogr B59:747–752Google Scholar
  8. 8.
    Chandrappa GT, Steunou N, Livage J (2002) Materials chemistry: macroporous crystalline vanadium oxide foam. Nature 416:702Google Scholar
  9. 9.
    Le DB, Passerini S, Guo J, Ressler J, Owens BB, Smyrl WH (1996) Aerogels and xerogels of V2O5 as intercalation hosts. J Electrochem Soc 143:L102–L103Google Scholar
  10. 10.
    Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789Google Scholar
  11. 11.
    Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977Google Scholar
  12. 12.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472Google Scholar
  13. 13.
    Tarascon JM, Wang E, Shokoohi FK (1991) The spinel phase of LiMn204 as a cathode in secondary lithium cells. J Electrochem Soc 138:2859–2864Google Scholar
  14. 14.
    Bates JB, Lubben D, Dudney NJ, Hart FX (1995) 5 volt plateau in LiMn2O4 thin films. J Electrochem Soc 142:L149–L151Google Scholar
  15. 15.
    Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2−xO4. J Electrochem Soc 144:205–213Google Scholar
  16. 16.
    Robertson AD, Lu SH, Averill WF, Howard WF (1997) M3+-modified LiMn2O4 spinel intercalation cathodes: I. Admetal effects on morphology and electrochemical performance. J Electrochem Soc 144:3500–3505Google Scholar
  17. 17.
    Hewston TA, Chamberland BL (1987) A survey of first-row ternary oxides LiMO2 (M = Sc-Cu). J Electrochem Soc 48:97–108Google Scholar
  18. 18.
    Obrovac MN, Mao O, Dahn JR (1998) Structure and electrochemistry of LiMO2 (M = Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis. Solid State Ionics 112:9–19Google Scholar
  19. 19.
    Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500Google Scholar
  20. 20.
    Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157–A1163Google Scholar
  21. 21.
    Armstrong AR, Robertson AD, Gitzendanner R, Bruce PG (1999) The layered intercalation compounds Li(Mn1−yCoy)O2: positive electrode materials for lithium–ion batteries. J. Solid State Chem 145:549–556Google Scholar
  22. 22.
    Makimura Y, Ohzuku T (2003) Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium–ion batteries. J Power Sources 119:156–160Google Scholar
  23. 23.
    Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2. Electrochem. Solid State Lett 5:A145–A148Google Scholar
  24. 24.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium–ion batteries. Chem Lett 30:642–643Google Scholar
  25. 25.
    Sun Y, Ouyang C, Wang Z, Huang X, Chen L (2004) Effect of Co content on rate performance of LiMn0.5−xCo2xNi0.5−xO2 cathode materials for lithium–ion batteries. J Electrochem Soc 151:A504–A508Google Scholar
  26. 26.
    Hwang SJ, Park HS, Choy JH (2000) Effects of chromium substitution on the chemical bonding nature and electrochemical performance of layered lithium manganese oxide. J Phys Chem B 104:7612–7618Google Scholar
  27. 27.
    Guo ZP, Zhong S, Wang GX, Liu HK, Dou SX (2003) Structure and electrochemical characteristics of LiMn0.7M0.3O2 (M = Ti, V, Zn, Mo, Co, Mg, Cr). J Alloys Compd 348:231–235Google Scholar
  28. 28.
    Li D, Peng Z, Ren H, Guo W, Zhou Y (2008) Synthesis and characterization of LiNi1−xO2 for lithium batteries by a novel method. Mater Chem Phys 107:171–176Google Scholar
  29. 29.
    Park YJ, Hong YS, Wu X, Kim MG, Ryu KS, Chang SH (2004) Cyclic properties of Li[Co0.17Li0.28Mn0.55]O2 cathode material. Bull Korean Chem Soc 25:511–516Google Scholar
  30. 30.
    Gao Y, Yakovleva MV, Ebner WB (1998) Novel LiNi1−xTix/2Mgx/2O2 compounds as cathode materials for safer lithium–ion batteries. Electrochem Solid State Lett 1:117–119Google Scholar
  31. 31.
    Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613Google Scholar
  32. 32.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367Google Scholar
  33. 33.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128Google Scholar
  34. 34.
    Sauvage F, Baudrin E, Gengembre L, Tarascon JM (2005) Effect of texture on the electrochemical properties of LiFePO4 thin films. Solid State Ionics 176:1869–1876Google Scholar
  35. 35.
    Ritchie A, Howard W (2006) Recent developments and likely advances in lithium–ion batteries. J Power Sources 162:809–812Google Scholar
  36. 36.
    Kim JK, Choi JW, Chauhan GS, Ahn JH, Hwang GC, Choi JB, Ahn HJ (2008) Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta 53:8258–8264Google Scholar
  37. 37.
    Hsu KF, Tsay SY, Hwang BJ (2005) Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis period. J Power Sources 146:529–533Google Scholar
  38. 38.
    Koltypin M, Aurbach D, Nazar L, Ellis B (2007) More on the performance of LiFePO4 electrodes—the effect of synthesis route, solution composition, aging, and temperature. J Power Sources 174:1241–1250Google Scholar
  39. 39.
    Choi D, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064–1069Google Scholar
  40. 40.
    Lin Y, Pan H, Gao M, Liu Y (2007) Effects of reductive conditions on the microstructure and electrochemical properties of sol–gel derived LiFePO4/C. J Electrochem Soc 154:A1124–A1128Google Scholar
  41. 41.
    Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538–544Google Scholar
  42. 42.
    Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172Google Scholar
  43. 43.
    Kepler KD, Vaughey JT, Thackeray MM (1999) LixCu6Sn5 (0 < x < 13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid State Lett 2:307–358Google Scholar
  44. 44.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946Google Scholar
  45. 45.
    Jiao F, Shaju KM, Bruce PG (2005) Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew Chem Int Ed 44:6550–6553Google Scholar
  46. 46.
    Dong W, Rolison DR, Dunn B (2000) Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem Solid State Lett 3:457–459Google Scholar
  47. 47.
    Flandrois S, Simon B (1999) Carbon materials for lithium–ion rechargeable batteries. Carbon 37:165–180Google Scholar
  48. 48.
    Bernal JD (1924) The structure of graphite. Proc R Soc Lond A 106:749–773Google Scholar
  49. 49.
    Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33:1457–1462Google Scholar
  50. 50.
    Yata S, Kinoshita H, Komori M, Ando N, Kashiwamura T, Harada T, Tanaka K, Yamabe T (1994) Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage. Synth Met 62:153–158Google Scholar
  51. 51.
    Mori Y, Iriyama T, Hashimoto T, Yamazaki S, Kawakami F, Shiroki H, Yamabe T (1995) Lithium doping/undoping in disordered coke carbons. J Power Sources 56:205–208Google Scholar
  52. 52.
    Matsumura Y, Wang S, Mondori J (1995) Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J Electrochem Soc 142:2914–2918Google Scholar
  53. 53.
    Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349Google Scholar
  54. 54.
    Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 37:61–69Google Scholar
  55. 55.
    Chen MH, Huang ZC, Wu GT, Zhu GM, You JK, Liu ZG (2003) Synthesis and characterization of SnO-carbon nanotube composite as anode material for lithium–ion batteries. MRS Bull 38:831–836Google Scholar
  56. 56.
    Chen WX, Lee JY, Liu ZL (2003) The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 41:959–966Google Scholar
  57. 57.
    Yang ZH, Li ZF, Wu HQ, Simard B (2003) Effects of doped copper on electrochemical performance of the raw carbon nanotube anode. Mater Lett 57:3160–3166Google Scholar
  58. 58.
    Shodai T, Okada S, Tobishima S, Yamaki J (1996) Study of Li3−xMxN (M = Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 86:785–789Google Scholar
  59. 59.
    Rao BML, Francis RW, Christopher HA (1977) Lithium–aluminum electrode. J Electrochem Soc 124:1490–1492Google Scholar
  60. 60.
    Wang X, Nishina T, Uchida I (2002) Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte. J Power Sources 104:90–96Google Scholar
  61. 61.
    Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochem Acta 45:31–50Google Scholar
  62. 62.
    Yang J, Winter M, Besenhard JO (1996) Small particle size multiphase Li-alloy anodes for lithium–ion batteries. Solid State Ionics 90:281–287Google Scholar
  63. 63.
    Mao O, Dunlap RA, Dahna JR (1999) Mechanically alloyed Sn–Fe (–C) powders as anode materials for li-ion batteries: I. The Sn2Fe–C system. J Electrochem Soc 146:405–413Google Scholar
  64. 64.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium–ion batteries. Nature 407:496–499Google Scholar
  65. 65.
    Chouvin J, Vicente CP, Fourcade JO, Jumas JC, Simon B, Biensan P (2004) Deeper insight on the lithium reaction mechanism with amorphous tin composite oxides. Solid State Sci 6:39–46Google Scholar
  66. 66.
    Larcher D (2003) Effect of particle size on lithium intercalation into (-Fe2O3. J Electrochem Soc 150:A133–A139Google Scholar
  67. 67.
    Chen J, Xu L, Li W, Gou X (2005) (-Fe2O3 nanotubes in gas sensor and lithium–ion battery applications. Adv Mater 17:582–586Google Scholar
  68. 68.
    Aricòl AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377Google Scholar
  69. 69.
    Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graffa G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192:588–598Google Scholar
  70. 70.
    Wang D, Choi D, Yang Z, Viswanathan VV, Nie Z, Wang C, Song Y, Zhang J, Liu J (2008) Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442Google Scholar
  71. 71.
    Hu YS, Lorenz K, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426Google Scholar
  72. 72.
    Reddy MA, Pralong V, Varadaraju UV, Raveau B (2008) Crystallite size constraints on lithium insertion into brookite TiO2. Electrochem Solid State Lett 11:A132–A134Google Scholar
  73. 73.
    Dimov N, Kugino S, Yoshio M (2004) Mixed silicon–graphite composites as anode material for lithium ion batteries—influence of preparation conditions on the properties of the material. J Power Sources 136:108–114Google Scholar
  74. 74.
    Wilson AM, Reimers JN, Fuller EW, Dahn JR (1994) Lithium insertion in pyrolyzed siloxane polymers. Solid State Ionics 74:249–254Google Scholar
  75. 75.
    Xie J, Cao GS, Zhao XB (2004) Electrochemical performances of Si-coated MCMB as anode material in lithium–ion cells. Mater Chem Phys 88:295–299Google Scholar
  76. 76.
    Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ (1998) Lithium insertion in carbon–silicon composite materials produced by mechanical milling. J Electrochem Soc 145:2751–2758Google Scholar
  77. 77.
    Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK (2004) Nanostructured Si–C composite anodes for lithium–ion batteries. Electrochem Commun 6:689–692Google Scholar
  78. 78.
    Xue JS, Myrtle K, Dahn JR (1995) Epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries. J Electrochem Soc 142:2927–2935Google Scholar
  79. 79.
    Wilson AM, Way BM, Dahn JR, Van Buuren T (1995) Nanodispersed silicon in pregraphitic carbons. J Appl Phys 77:2363–2369Google Scholar
  80. 80.
    Holzapfel M, Buqa H, Scheifele W, Novák P, Petrat FM (2005) A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem Commun 12:1566–1568Google Scholar
  81. 81.
    Yang XQ, McBreen J, Yoon WS, Yoshio M, Wang H, Fukuda K, Umeno T (2002) Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD. Electrochem Commun 4:893–897Google Scholar
  82. 82.
    Kim JH, Kim H, Sohn HJ (2005) Addition of Cu for carbon coated Si-based composites as anode materials for lithium–ion batteries. Electrochem Commun 7:557–561Google Scholar
  83. 83.
    Kasavajjula US, Wang C (2005) Nano Si/G composite anode in Li ion battery for aerospace applications. Indian J Chem A 44:975–982Google Scholar
  84. 84.
    Liu CL (2005) Using mutual information for adaptive item comparison and student assessment. Educ Technol Soc 8:100–119Google Scholar
  85. 85.
    Ohara S, Suzuki J, Sekine K, Takamura T (2004) A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J Power Sources 136:303–306Google Scholar
  86. 86.
    Hatchard TD, Dahn JR (2004) Study of the electrochemical performance of sputtered Si1−xSnx films. J Electrochem Soc 151:A1628–A1635Google Scholar
  87. 87.
    Hatchard TD, Dahn JR (2005) Electrochemical reaction of the SiAg binary system with Li. J Electrochem Soc 152:A1445–A1451Google Scholar
  88. 88.
    Hatchard TD, Obrovac MN, Dahn JR (2005) Electrochemical reaction of the Si1−xZnx binary system with Li. J Electrochem Soc 152:A2335–A2344Google Scholar
  89. 89.
    Song SW, Striebel KA, Reade RP, Roberts GA, Cairns EJ (2003) Electrochemical studies of nanocrystalline Mg2Si thin film electrodes prepared by pulsed laser deposition. J Electrochem Soc 150:A121–A127Google Scholar
  90. 90.
    Lee SJ, Baik HK, Lee SM (2003) An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films. Electrochem Commun 5:32–35Google Scholar
  91. 91.
    Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M (2005) Analysis of SiO anodes for lithium–ion batteries. J Electrochem Soc 152:A2089–A2091Google Scholar
  92. 92.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium–ion secondary cells. J Power Sources 163:1003–1039Google Scholar
  93. 93.
    Caïola A, Guy H, Sohm JCH (1970) Etude des systemes Li/LiCH3CO2, Cu/Cu(CH3CO2)2 ET Hg/Hg2(CH3CO2)2 en milieu organique. Electrochim Acta 15:1733–1746Google Scholar
  94. 94.
    Tobishima S, Yamaji A (1983) Electrolytic characteristics of mixed solvent electrolytes for lithium secondary batteries. Electrochim Acta 28:1067–1072Google Scholar
  95. 95.
    Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218Google Scholar
  96. 96.
    Xu K, Zhang S, Jow TR, Xu W, Angell CA (2002) LiBOB as salt for lithium–ion batteries. A possible solution for high temperature operation. Electrochem Solid State Lett 5:A26–A29Google Scholar
  97. 97.
    Dominey LA (1994) Current state of the art on lithium battery electrolytes. Ind Chem Libr 5:137–165Google Scholar
  98. 98.
    Galiński M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580Google Scholar
  99. 99.
    Sakaebe H, Matsumoto H (2003) N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl)imide (PP13–TFSI)—novel electrolyte base for Li battery. Electrochem Commun 5:594–598Google Scholar
  100. 100.
    Hayashi K, Nemoto Y, Akuto K, Sakurai Y (2005) Alkylated imidazolium salt electrolyte for lithium cells. J Power Sources 146:689–692Google Scholar
  101. 101.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458Google Scholar
  102. 102.
    DeLongchamp DM, Hammond PT (2004) Highly ion conductive poly (ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 20:5403–5411Google Scholar
  103. 103.
    Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92Google Scholar
  104. 104.
    Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuto H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693Google Scholar
  105. 105.
    Shan YJ, Chen L, Inaguma Y, Itoh M, Nakamura T (1995) Oxide cathode with perovskite structure for rechargeable lithium batteries. J Power Sources 54:397–402Google Scholar
  106. 106.
    Xu X, Wen Z, Gu Z, Xu X, Lin Z (2004) Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1−xTix)1.6(PO4)3 (x = 0–1.0). Solid State Ionics 171:207–213Google Scholar
  107. 107.
    Thangadurai V, Weppner W (2005) Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J Power Sources 142:339–344Google Scholar
  108. 108.
    Vereda F, Goldner RB, Haas TE (2002) Rapidly grown IBAD LiPON films with high Li-ion conductivity and electrochemical stability. Electrochem Solid State Lett 5:A239–A241Google Scholar
  109. 109.
    Bates JB, Dudney NJ, Gruzalzki GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53:647–654Google Scholar
  110. 110.
    Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, Orimo S (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131:894–895Google Scholar
  111. 111.
    Wang B, Bates JB, Hart FX, Sales BC, Zuhr RA, Robertson JD (1996) Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J Electrochem Soc 143:3203–3213Google Scholar
  112. 112.
    Patil A, Patil V, Shin DW, Choi JW, Paik DS, Yoon SJ (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942Google Scholar
  113. 113.
    West WC, Whitacre JF, White V, Ratnakumar BV (2002) Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications. J Micromech Microeng 12:58–62Google Scholar
  114. 114.
    Qingfeng L, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10Google Scholar
  115. 115.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5Google Scholar
  116. 116.
    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149:A1190–A1195Google Scholar
  117. 117.
    Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769Google Scholar
  118. 118.
    Xu JJ, Ye H (2005) Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization. Electrochem Commun 7:829–835Google Scholar
  119. 119.
    Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2008) Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155:A965–A969Google Scholar
  120. 120.
    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2010) Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid–water solutions. J Electrochem Soc 157:A214–A218Google Scholar
  121. 121.
    Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 12:41–99Google Scholar
  122. 122.
    Ren Y (2009) Tailoring the pore size/wall thickness of mesoporous transition metal oxides. Microporous Mesoporous Mater 121:1387Google Scholar
  123. 123.
    Joho F, Rykart B, Imhof R, Novák P, Spahr ME, Monnier A (1999) Key factors for the cycling stability of graphite intercalation electrodes for lithium–ion batteries. J Power Sources 81:243–247Google Scholar
  124. 124.
    Li JX, Wu CX, Guan LH (2009) Lithium insertion/extraction properties of nanocarbon materials. J Phys Chem C 113:18431–18435Google Scholar
  125. 125.
    Wang PC, Ding HP, Bark T, Chena CH (2007) Nanosized (-Fe2O3 and Li–Fe composite oxide electrodes for lithium–ion batteries. Electrochim Acta 52:6650–6655Google Scholar
  126. 126.
    Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY (2004) Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes. Electrochem Solid State Lett 8:A26–A29Google Scholar
  127. 127.
    MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations