Conceptualizing Context for Pervasive Advertising

  • Christine BauerEmail author
  • Sarah Spiekermann
Part of the Human-Computer Interaction Series book series (HCIS)


Profile-driven personalization based on socio-demographics is currently regarded as the most convenient base for successful personalized advertising. However, signs point to the dormant power of context recognition: Advertising systems that can adapt to the situational context of a consumer will rapidly gain importance. While technologies that can sense the environment are increasingly advanced, questions such as what to sense and how to adapt to a consumer’s context are largely unanswered. In this chapter, we analyze the purchase context of a retail outlet and conceptualize it such that adaptive pervasive advertising applications really deliver on their potential: showing the right message at the right time to the right recipient.


Macro Level Context Model Information Category Context Conceptualization Advertising Campaign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    media MediMax: Der moderne Vorreiter der Elektronikfachmarktbranches (2010)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a ­survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Anderson, S.J., Volker, J.X., Phillips, M.D.: Estimating intermarket retail sales flows on a comparative county, MSA and statewide benchmark basis, Proceedings of American Society of Business and Behavioral Sciences Conference (ASBBS 2000), 17–21 February, Las Vegas, NV, ASBBS, pp. 139–144 (2000)Google Scholar
  4. 4.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad. Hoc. Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  5. 5.
    Belch, G.E., Belch, M.A. (eds.): Advertising and Promotion: An Integrated Marketing Communications Perspective, 5th edn. Irwin McGraw-Hill, Boston (2001)Google Scholar
  6. 6.
    Belk, R.W.: Situational variables and consumer behavior. J. Consum. Res. 2(3), 157–164 (1975)CrossRefGoogle Scholar
  7. 7.
    Bitner, M.J.: Servicescapes: the impact of physical surroundings on customers and employees. J. Market. 56, 57–71 (1992)CrossRefGoogle Scholar
  8. 8.
    Black, D., Clemmensen, N.J., Skov, M.B.: Supporting the supermarket shopping experience through a context-aware shopping trolley. In: 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, Melbourne, 23–27 Nov 2009. ACM, pp. 33–40. doi:10.1145/1738826.1738833 (2009)Google Scholar
  9. 9.
    Bradley, N.A., Dunlop, M.D.: Toward a multidisciplinary model of context to support context-aware computing. Hum. Comput. Interact. 20(4), 403–446 (2005)CrossRefGoogle Scholar
  10. 10.
    Cutrell, E., Czerwinski, M., Horvitz, E.: Notification, disruption, and memory: effects of messaging interruptions on memory and performance. In: Hirose M., (ed.) Human-Computer Interaction (INTERACT 2001), Tokyo, 9–13 July 2001, pp. 263–269. IOS Press, Oxford (2001)Google Scholar
  11. 11.
    Dey, A.K.: Context-aware computing: The cyberDesk project. In: AAAI ’98 Spring Symposium, Palo Alto, California, 23–25 Mar 1998, pp. 51–54 (1998)Google Scholar
  12. 12.
    Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of context-aware applications. In: Workshop on Software Engineering for Wearable and Pervasive Computing (SEWPC 2000), part of 22nd International Conference on Software Engineering (ICSE 2000), Limerick, 6 June 2000 (2000)Google Scholar
  13. 13.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001). doi:10.1007/s007790170019CrossRefGoogle Scholar
  14. 14.
    Eriksson, C.I., Åkesson, M.: Ubiquitous advertising challenges. In: 7th International Conference on Mobile Business (ICMB ’08), Barcelona, 7–8 July 2008. IEEE Computer Society, pp. 9–18, doi:10.1109/ICMB.2008.19 (2008)Google Scholar
  15. 15.
    Ferscha, A., Vogl, S., Beer, W.: Ubiquitous context sensing in wireless environments. In: Kacsuk, P., Kranzlmüller, D., Németh, Z., Volkert, J. (eds.) Distributed and Parallel Systems: Cluster and Grid Computing. Springer, New York (2002)Google Scholar
  16. 16.
    Ferscha, A., Holzmann, C., Oppl, S.: Context awareness for group interaction support. In: 2nd International Workshop on Mobility Management & Wireless Access Protocols in Conjunction with International Conference on Mobile Computing and Networking (MobiWac ’04), Philadelphia, 1 Oct 2004. ACM, doi:10.1145/1023783.1023801 (2004)Google Scholar
  17. 17.
    Ferscha, A., Swoboda, W., Wimberger, C.: En passant coupon collection. In: Fischer S., Maehle E., Reischuk R., (eds.) 2nd International Workshop on Pervasive Advertising (in Conjunction with Informatik 2009), Lübeck, pp. 3911–3925, 28 Sept – 2 Oct 2009a (2009)Google Scholar
  18. 18.
    Ferscha, A., Vogl, S., Emsenhuber, B., Spindelbalker, R.: SPECTACLES – autonomous wearable displays. In: Adjunct Proceedings of 13th International Symposium on Wearable Computers (ISWC ’09), Linz, Vienna, Austria, 4–7 Sept 2009b. OCG (2009)Google Scholar
  19. 19.
    Handelsverband. (2010) Distanzhandel gewinnt an Bedeutung [Electronic Version], from [Last Accessed 27 July 2011]
  20. 20.
    Hillier, B.: The common language of space: a way of looking at the social, economic and environmental functioning of cities on a common basis. J. Environ. Sci. (China) 11(3), 344–349 (1999)Google Scholar
  21. 21.
    Hong, J.-Y., Suh, E.-H., Kim, S.-J.: Context-aware systems: a literature review and classification. Exp. Syst. Appl. 36, 8509–8522 (2009). doi:10.1016/j.eswa.2008.10.071CrossRefGoogle Scholar
  22. 22.
    Ju, W., Leifer, L.: The design of implicit interactions: making interactive systems less obnoxious. Des. Issues 24(3), 72–84 (2008)Google Scholar
  23. 23.
    Kim, W.: Personalization: definition, status, and challenges ahead. J. Object Technol. 1(1), 29–40 (2002)CrossRefGoogle Scholar
  24. 24.
    Kumar, V., George, M., Pancras, J.: Cross-buying in retailing: drivers and consequences. J. Retail. 84(1) (2008)Google Scholar
  25. 25.
    Kurbel, K.E.: The Making of Information Systems: Software Engineering and Management in a Globalized World. Springer, Berlin (2008)Google Scholar
  26. 26.
    Manchanda, P., Ansari, A., Gupta, S.: The “shopping basket”: a model for multicategory purchase incidence decisions. Market. Sci. 18(2), 95–114 (1999). doi:10.1287/mksc.18.2.95CrossRefGoogle Scholar
  27. 27.
    Mild, A., Reutterer, T.: An improved collaborative filtering approach for predicting cross-category purchases based on binary market basket data. J. Retail. Consum. Serv. 10(3), 123–133 (2003)CrossRefGoogle Scholar
  28. 28.
    Müller, J., Exeler, J., Buzeck, M., Krüger, A.: Reflective Signs: digital signs that adapt to audience attention, Proceedings of 7th International Conference Pervasive Computing (Pervasive 2009), 11–14 May, Nara, Japan, Springer, pp. 17–24 (2009)Google Scholar
  29. 29.
    Mulvenna, M.D., Anand, S.S., Büchner, A.G.: Personalization on the net using web mining. Commun. ACM 43(8), 123–125 (2009)CrossRefGoogle Scholar
  30. 30.
    NEC Display Solutions: Vergleichsstudie SPAR Markt Füssen/Kempten: Umsatzsteigerungen mit Retail Signage Systemen im Einzelhandel. Retail Signage & Public Displays, NEC Studie (2006)Google Scholar
  31. 31.
    O’Grady, M.J., Ye, J., O’Hare, G.M.P., Dobson, S., Tynan, R., Muldoon, C.: Implicit interaction. In: International Workshop on Instinctive Computing, Pittsburgh, 15–16 June 2009. Lecture Notes in Artificial Intelligence (LNAI). Springer Heidelberg, Germany (2009)Google Scholar
  32. 32.
    Page, B.: Dunnhumby renames Tesco TV: rethinks approach to content [Electronic Version]. - retail. Retrieved 30 June 2010, from [Last Accessed 27 July 2011] (2007)
  33. 33.
    Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: 2nd International Symposium on Wearable Computers, Pittsburgh, 19–20 Oct 1998, pp. 92–99. doi:10.1109/ISWC.1998.729534 (1998)Google Scholar
  34. 34.
    Puccinelli, N.M., Goodstein, R.C., Grewal, D., Price, R., Raghubir, P., Stewart, D.: Customer experience management in retailing: understanding the buying process. J. Retail. 85(1) (2009). doi:10.1016/j.jretai.2008.11.003Google Scholar
  35. 35.
    Rehme, F.: From challenge to chance: challenges in a changing society. In: Innovative Technologien im Handel, St. Wendel, 1 June 2010. Innovative Retail Laboratory, DFKI, St. Wendel, Germany (2010)Google Scholar
  36. 36.
    Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Netw. 8(5), 22–32 (1994)CrossRefGoogle Scholar
  37. 37.
    Schmidt, A.: Implicit human computer interaction through context. Pers. Technol. 4(2–3), 191–199 (2000)CrossRefGoogle Scholar
  38. 38.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Comput. Graph. J. 23(6), 893–902 (1999)CrossRefGoogle Scholar
  39. 39.
    Smith, S.: Sharing the wealth: is contextual advertising the new gold rush for content providers? EContent 27(4), 22–27 (2004)Google Scholar
  40. 40.
    Te’eni, D., Carey, J., Zhang, P.: Human Computer Interaction: Developing Effective Organizational Information Systems. John Wiley, Hoboken (2007)Google Scholar
  41. 41.
    Tuzhilin, A.: Personalization: the state of the art and future directions. In: Adomavicius, G., Gupta, A. (eds.) Business Computing: Handbooks in Information Systems, vol 3. Emerald, Bingley (2009)Google Scholar
  42. 42.
    Yuan, S.-T., Tsao, Y.W.: A recommendation mechanism for contextualized mobile advertising. Expert Syst. Appl. 24(4), 399–414 (2003). doi:10.1016/S0957-4174(02)00189-6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Vienna University of Economics and BusinessWienAustria

Personalised recommendations