On the Group-Theoretic Structure of Lifted Filter Banks

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


The polyphase-with-advance matrix representations of whole-sample symmetric (WS) unimodular filter banks form a multiplicative matrix Laurent polynomial group. Elements of this group can always be factored into lifting matrices with half-sample symmetric (HS) off-diagonal lifting filters; such linear phase lifting factorizations are specified in the ISO/IEC JPEG2000 image coding standard. Half-sample symmetric unimodular filter banks do not form a group, but such filter banks can be partiallyfactored into a cascade of whole-sample antisymmetric(WA) lifting matrices starting from a concentric, equal-length HS base filter bank. An algebraic framework called a group lifting structurehas been introduced to formalize the group-theoretic aspects of matrix lifting factorizations. Despite their pronounced differences, it has been shown that the group lifting structures for both the WS and HS classes satisfy a polyphase order-increasing propertythat implies uniqueness (“modulo rescaling”) of irreducible group lifting factorizations in both group lifting structures. These unique factorization results can in turn be used to characterize the group-theoretic structure of the groups generated by the WS and HS group lifting structures.


Lifting Filter bank Linear phase filter Group theory Group lifting structure JPEG 2000 Wavelet Polyphase matrix Unique factorization Matrix polynomial 


  1. 1.
    Brislawn, C.M.: Group lifting structures for multirate filter banks I: Uniqueness of lifting factorizations. IEEE Trans. Signal Process. 58(4), 2068–2077 (2010). URL http://dx.doi.org/10.1109/TSP.2009.2039816 Google Scholar
  2. 2.
    Brislawn, C.M.: Group lifting structures for multirate filter banks II: Linear phase filter banks. IEEE Trans. Signal Process. 58(4), 2078–2087 (2010). DOI 10.1109/TSP.2009.2039818. URL http://dx.doi.org/10.1109/TSP.2009.2039818 Google Scholar
  3. 3.
    Brislawn, C.M.: Group-theoretic structure of linear phase multirate filter banks. Tech. Rep. LA-UR-12-20858, Los Alamos National Laboratory (2012). Submitted for publication. URL http://viz.lanl.gov/paper.html
  4. 4.
    Brislawn, C.M., Wohlberg, B.: The polyphase-with-advance representation and linear phase lifting factorizations. IEEE Trans. Signal Process. 54(6), 2022–2034 (2006). DOI 10.1109/TSP.2006.872582. URL http://dx.doi.org/10.1109/TSP.2006.872582 Google Scholar
  5. 5.
    Bruekers, F.A.M.L., van den Enden, A.W.M.: New networks for perfect inversion and perfect reconstruction. IEEE J. Selected Areas Commun. 10(1), 129–137 (1992)CrossRefGoogle Scholar
  6. 6.
    Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.L.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998). DOI 10.1006/acha.1997.0238. URL http://www.sciencedirect.com/science/article/B6WB3-45KKTPF-H/2/489d06bc0099f6a398eb534b2a8a8481
  7. 7.
    Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice Hall, Englewood Cliffs (1983)Google Scholar
  8. 8.
    Daubechies, I.C.: Ten Lectures on Wavelets. No. 61 in CBMS-NSF Regional Conf. Series in Appl. Math., (Univ. Mass.—Lowell, June 1990). Soc. Indust. Appl. Math., Philadelphia (1992)Google Scholar
  9. 9.
    Daubechies, I.C., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. No. 28 In: Princeton Mathematical Notes. Princeton Univ. Press, Princeton (1982)Google Scholar
  11. 11.
    Hungerford, T.W.: Algebra. Springer, New York (1974)MATHGoogle Scholar
  12. 12.
    Information technology—JPEG 2000 image coding system, Part 1, ISO/IEC Int’l. Standard 15444-1, ITU-T Rec. T.800. Int’l. Org. Standardization (2000)Google Scholar
  13. 13.
    Information technology—JPEG 2000 image coding system, Part 2: Extensions, ISO/IEC Int’l. Standard 15444-2, ITU-T Rec. T.801. Int’l. Org. Standardization (2004)Google Scholar
  14. 14.
    MacLane, S., Birkhoff, G.: Algebra. Macmillan, New York (1967)MATHGoogle Scholar
  15. 15.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)MATHGoogle Scholar
  16. 16.
    Nguyen, T.Q., Vaidyanathan, P.P.: Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters. IEEE Transactions on Acoustics, Speech and Signal Processing 37(5), 676–690 (1989)CrossRefGoogle Scholar
  17. 17.
    Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn. Prentice Hall, Upper Saddle River (1998)Google Scholar
  18. 18.
    Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New York (1995)MATHCrossRefGoogle Scholar
  19. 19.
    Said, A., Pearlman, W.A.: Reversible image compression via multiresolution representation and predictive coding. In: Visual Commun. & Image Proc., Proc. SPIE, vol. 2094, pp. 664–674. SPIE, Cambridge (1993)Google Scholar
  20. 20.
    Stein, E.M.: Harmonic Analysis. Princeton Univ. Press, Princeton (1993)MATHGoogle Scholar
  21. 21.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge, Wellesley (1996)MATHGoogle Scholar
  22. 22.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Anal. 3(2), 186–200 (1996)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  25. 25.
    Vetterli, M., Kovačević, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  26. 26.
    Zandi, A., Allen, J.D., Schwartz, E.L., Boliek, M.: Compression with reversible embedded wavelets. In: Proc. Data Compress. Conf., pp. 212–221. IEEE Computer Soc., Snowbird (1995)Google Scholar

Copyright information

© Birkhäuser Boston 2013

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations