Finite Frames pp 193-239 | Cite as

Gabor Frames in Finite Dimensions

  • Götz E. PfanderEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Gabor frames have been extensively studied in time-frequency analysis over the last 30 years. They are commonly used in science and engineering to synthesize signals from, or to decompose signals into, building blocks which are localized in time and frequency. This chapter contains a basic and self-contained introduction to Gabor frames on finite-dimensional complex vector spaces. In this setting, we give elementary proofs of the central results on Gabor frames in the greatest possible generality; that is, we consider Gabor frames corresponding to lattices in arbitrary finite Abelian groups. In the second half of this chapter, we review recent results on the geometry of Gabor systems in finite dimensions: the linear independence of subsets of its members, their mutual coherence, and the restricted isometry property for such systems. We apply these results to the recovery of sparse signals, and discuss open questions on the geometry of finite-dimensional Gabor systems.


Gabor analysis on finite Abelian groups Linear independence Coherence Restricted isometry constants of Gabor frames Applications to compressed sensing Erasure channel error correction Channel identification 



The author acknowledges support under the Deutsche Forschungsgemeinschaft (DFG) grant 50292 DFG PF-4 (Sampling of Operators).

Parts of this paper were written during a sabbatical of the author at the Research Laboratory for Electronics and the Department of Mathematics at the Massachusetts Institut of Technology. He is grateful for the support and the stimulating research environment.


  1. 1.
    Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26(3), 350–354 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26(2), 283–290 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. I: theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Balian, R.: Un principe d’incertitude fort en théorie du signal on en mécanique quantique. C. R. Acad. Sci. Paris 292, 1357–1362 (1981) MathSciNetGoogle Scholar
  6. 6.
    Bastiaans, M.J., Geilen, M.: On the discrete Gabor transform and the discrete Zak transform. Signal Process. 49(3), 151–166 (1996) CrossRefGoogle Scholar
  7. 7.
    Benedetto, J.J.: Harmonic Analysis and Applications. Studies in Advanced Mathematics. CRC Press, Boca Raton (1997) Google Scholar
  8. 8.
    Benedetto, J.J., Benedetto, R.L., Woodworth, J.T.: Optimal ambiguity functions and Weil’s exponential sum bound. J. Fourier Anal. Appl. 18(3), 471–487 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benedetto, J.J., Donatelli, J.J.: Ambiguity function and frame theoretic properties of periodic zero autocorrelation waveforms. In: IEEE J. Special Topics Signal Process, vol. 1, pp. 6–20 (2007) Google Scholar
  10. 10.
    Benedetto, J.J., Heil, C., Walnut, D.: Remarks on the proof of the Balian-Low theorem. Annali Scuola Normale Superiore, Pisa (1993) Google Scholar
  11. 11.
    Benedetto, J.J., Heil, C., Walnut, D.F.: Gabor systems and the Balian-Low theorem. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 85–122. Birkhäuser, Boston (1998) CrossRefGoogle Scholar
  12. 12.
    Björck, G.: Functions of modulus one on Z p whose Fourier transforms have constant modulus. In: A. Haar memorial conference, Vol. I, II, Budapest, 1985. Colloq. Math. Soc. János Bolyai, vol. 49, pp. 193–197. North-Holland, Amsterdam (1987) Google Scholar
  13. 13.
    Björck, G.: Functions of modulus 1 on Z n whose Fourier transforms have constant modulus, and “cyclic n-roots”. In: Recent Advances in Fourier Analysis and Its Applications, Il Ciocco, 1989. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 315, pp. 131–140. Kluwer Academic, Dordrecht (1990) CrossRefGoogle Scholar
  14. 14.
    Brigham, E. (ed.): The Fast Fourier Transform. Prentice Hall, Englewood Cliffs (1974) zbMATHGoogle Scholar
  15. 15.
    Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006) zbMATHCrossRefGoogle Scholar
  16. 16.
    Candès, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006) CrossRefGoogle Scholar
  17. 17.
    Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9–10), 589–592 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Casazza, P., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Casazza, P., Pfander, G.E.: Infinite dimensional restricted invertibility, preprint (2011) Google Scholar
  20. 20.
    Chiu, J., Demanet, L.: Matrix probing and its conditioning. SIAM J. Numer. Anal. 50(1), 171–193 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Christensen, O.: Atomic decomposition via projective group representations. Rocky Mt. J. Math. 26(4), 1289–1313 (1996) zbMATHCrossRefGoogle Scholar
  22. 22.
    Christensen, O., Feichtinger, H.G., Paukner, S.: Gabor analysis for imaging. In: Handbook of Mathematical METHODS in Imaging, vol. 3, pp. 1271–1307. Springer, Berlin (2010) Google Scholar
  23. 23.
    Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. Society for Industrial and Applied Mathematics, Philadelphia (1992) zbMATHCrossRefGoogle Scholar
  26. 26.
    Demeter, C., Zaharescu, A.: Proof of the HRT conjecture for (2,2) configurations, preprint Google Scholar
  27. 27.
    Donoho, D.L., Elad, M.: Optimally sparse representations in general (non-orthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2002) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Evans, R.J., Isaacs, I.M.: Generalized Vandermonde determinants and roots of unity of prime order. Proc. Am. Math. Soc. 58, 51–54 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications. CRC Press, Boca Raton (1994) Google Scholar
  33. 33.
    Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1996) CrossRefGoogle Scholar
  34. 34.
    Feichtinger, H.G., Kozek, W.: Quantization of TF-lattice invariant operators on elementary LCA groups. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 233–266. Birkhäuser, Boston (1998) CrossRefGoogle Scholar
  35. 35.
    Feichtinger, H.G., Kozek, W., Luef, F.: Gabor analysis over finite abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math. 57, 233–253 (2006) (Extra Volume) MathSciNetGoogle Scholar
  37. 37.
    Feichtinger, H.G., Strohmer, T., Christensen, O.: A group-theoretical approach to Gabor analysis. Opt. Eng. 34(6), 1697–1704 (1995) CrossRefGoogle Scholar
  38. 38.
    Folland, G., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Fornasier, M., Rauhut, H.: Compressive sensing. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 187–228. Springer, Berlin (2011) CrossRefGoogle Scholar
  40. 40.
    Frenkel, P.: Simple proof of Chebotarevs theorem on roots of unity, preprint (2004). math.AC/0312398
  41. 41.
    Gabor, D.: Theory of communication. J. IEE, London 93(3), 429–457 (1946) Google Scholar
  42. 42.
    Ghobber, S., Jaming, P.: On uncertainty principles in the finite dimensional setting. Linear Algebra Appl. 435(4), 751–768 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Golomb, S., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005) zbMATHCrossRefGoogle Scholar
  44. 44.
    Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. Inf. Theory 52(1), 255–261 (2006) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 211–231. Birkhäuser, Boston (1998) CrossRefGoogle Scholar
  46. 46.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001) Google Scholar
  47. 47.
    Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Feichtinger, H., Strohmer, T. (eds.) Advances in Gabor Analysis, pp. 11–30. Birkhäuser, Boston (2003) CrossRefGoogle Scholar
  48. 48.
    Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10(2), 105–132 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 12, 113–166 (2007) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Heil, C., Ramanathan, J., Topiwala, P.: Linear independence of time–frequency translates. Proc. Amer. Math. Soc. 124(9), 2787–2795 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. (Frames and overcomplete representations in signal processing, communications, and information theory), Art. ID 85,685, 12 (2006) Google Scholar
  52. 52.
    Jaillet, F., Balazs, P., Dörfler, M., Engelputzeder, N.: Nonstationary Gabor Frames. In: SAMPTA’09, Marseille, May 18–22. ARI; Gabor; NuHAG; NHG-coop (2009) Google Scholar
  53. 53.
    Janssen, A.J.E.M.: Gabor representation of generalized functions. J. Math. Anal. Appl. 83, 377–394 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Janssen, A.J.E.M.: From continuous to discrete Weyl-Heisenberg frames through sampling. J. Fourier Anal. Appl. 3(5), 583–596 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Kaiblinger, N.: Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl. 11(1), 25–42 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Katznelson, Y.: An Introduction to Harmonic Analysis. Dover, New York (1976) zbMATHGoogle Scholar
  58. 58.
    Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36(4), 30 (2009), Art. 19 MathSciNetCrossRefGoogle Scholar
  59. 59.
    Krahmer, F., Pfander, G.E., Rashkov, P.: Uncertainty in time-frequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Krahmer, F., Mendelson, S., Rauhut, H.: Suprema of chaos processes and the restricted isometry property (2012) Google Scholar
  61. 61.
    Landau, H.: Necessary density conditions for sampling an interpolation of certain entire functions. Acta Math. 117, 37–52 (1967) MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Landau, H.: On the density of phase-space expansions. IEEE Trans. Inf. Theory 39(4), 1152–1156 (1993) zbMATHCrossRefGoogle Scholar
  63. 63.
    Landau, H., Pollak, H.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 65–84 (1961) MathSciNetzbMATHGoogle Scholar
  64. 64.
    Lawrence, J., Pfander, G.E., Walnut, D.F.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Li, S.: Discrete multi-Gabor expansions. IEEE Trans. Inf. Theory 45(6), 1954–1967 (1999) zbMATHCrossRefGoogle Scholar
  66. 66.
    Low, F.: Complete sets of wave packets. In: DeTar, C. (ed.) A Passion for Physics—Essay in Honor of Geoffrey Chew, pp. 17–22. World Scientific, Singapore (1985) Google Scholar
  67. 67.
    Lyubarskii, Y.I.: Frames in the Bargmann space of entire functions. Adv. Sov. Math. 429, 107–113 (1992) Google Scholar
  68. 68.
    Manjunath, B.S., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI—Special issue on Digital Libraries) 18(8), 837–842 (1996) CrossRefGoogle Scholar
  69. 69.
    Matusiak, E., Özaydın, M., Przebinda, T.: The Donoho-Stark uncertainty principle for a finite abelian group. Acta Math. Univ. Comen. (N.S.) 73(2), 155–160 (2004) zbMATHGoogle Scholar
  70. 70.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932), (1949) and (1955) Google Scholar
  71. 71.
    Orr, R.: Derivation of the finite discrete Gabor transform by periodization and sampling. Signal Process. 34(1), 85–97 (1993) zbMATHCrossRefGoogle Scholar
  72. 72.
    Pei, S.C., Yeh, M.H.: An introduction to discrete finite frames. IEEE Signal Process. Mag. 14(6), 84–96 (1997) CrossRefGoogle Scholar
  73. 73.
    Pevskir, G., Shiryaev, A.N.: The Khintchine inequalities and martingale expanding sphere of their action. Russ. Math. Surv. 50(5), 849–904 (1995) CrossRefGoogle Scholar
  74. 74.
    Pfander, G.E.: Note on sparsity in signal recovery and in matrix identification. Open Appl. Math. J. 1, 21–22 (2007) MathSciNetCrossRefGoogle Scholar
  75. 75.
    Pfander, G.E., Rauhut, H.: Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Pfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008) MathSciNetCrossRefGoogle Scholar
  77. 77.
    Pfander, G.E., Rauhut, H., Tropp, J.A.: The restricted isometry property for time-frequency structured random matrices. Probab. Theory Relat. Fields (to appear) Google Scholar
  78. 78.
    Pfander, G.E., Walnut, D.: Measurement of time-variant channels. IEEE Trans. Inf. Theory 52(11), 4808–4820 (2006) MathSciNetCrossRefGoogle Scholar
  79. 79.
    Qiu, S.: Discrete Gabor transforms: the Gabor-Gram matrix approach. J. Fourier Anal. Appl. 4(1), 1–17 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Qiu, S., Feichtinger, H.: Discrete Gabor structure and optimal representation. IEEE Trans. Signal Process. 43(10), 2258–2268 (1995) CrossRefGoogle Scholar
  81. 81.
    Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform: Algorithms and Applications. Signals and Communication Technology. Springer, Dordrecht (2010) zbMATHCrossRefGoogle Scholar
  82. 82.
    Rauhut, H.: Compressive sensing and structured random matrices. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Series Comp. Appl. Math., vol. 9, pp. 1–92. de Gruyter, Berlin (2010) Google Scholar
  83. 83.
    Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in 2(ℝd). Tech. Rep. 95-03, University of Wisconsin, Madison (WI) (1995) Google Scholar
  84. 84.
    Rudin, W.: Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12. Interscience Publishers (a division of John Wiley & Sons), New York–London (1962) zbMATHGoogle Scholar
  85. 85.
    Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992) MathSciNetzbMATHGoogle Scholar
  86. 86.
    Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992) MathSciNetzbMATHGoogle Scholar
  87. 87.
    Skolnik, M.: Introduction to Radar Systems. McGraw-Hill, New York (1980) Google Scholar
  88. 88.
    Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961) MathSciNetzbMATHGoogle Scholar
  89. 89.
    Soendergaard, P.L., Torresani, B., Balazs, P.: The linear time frequency analysis toolbox. Int. J. Wavelets Multi. 10(4), 27 pp. Google Scholar
  90. 90.
    Søndergaard, P.L.: Gabor frames by sampling and periodization. Adv. Comput. Math. 27(4), 355–373 (2007) MathSciNetCrossRefGoogle Scholar
  91. 91.
    Strohmer, T.: Numerical algorithms for discrete Gabor expansions. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 267–294. Birkhäuser, Boston (1998) CrossRefGoogle Scholar
  92. 92.
    Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Tao, T.: An uncertainty principle for groups of prime order. Math. Res. Lett. 12, 121–127 (2005) MathSciNetzbMATHGoogle Scholar
  94. 94.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  95. 95.
    Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004) MathSciNetCrossRefGoogle Scholar
  96. 96.
    Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 51(3), 1030–1051 (2006) MathSciNetCrossRefGoogle Scholar
  97. 97.
    Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25(1), 1–24 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21(3), 207–221 (1990) CrossRefGoogle Scholar
  99. 99.
    Xia, X.G., Qian, S.: On the rank of the discrete Gabor transform matrix. Signal Process. 52(3), 1083–1087 (1999) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations