Finite Frames pp 337-379

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

| Cite as

Finite Frames and Filter Banks

  • Matthew Fickus
  • Melody L. Massar
  • Dustin G. Mixon

Abstract

Filter banks are fundamental tools of signal and image processing. A filter is a linear operator which computes the inner products of an input signal with all translates of a fixed function. In a filter bank, several filters are applied to the input, and each of the resulting signals is then downsampled. Such operators are closely related to frames, which consist of equally spaced translates of a fixed set of functions. In this chapter, we highlight the rich connections between frame theory and filter banks. We begin with the algebraic properties of related operations, such as translation, convolution, downsampling, the discrete Fourier transform, and the discrete Z-transform. We then discuss how basic frame concepts, such as frame analysis and synthesis operators, carry over to the filter bank setting. The basic theory culminates with the representation of a filter bank’s synthesis operator in terms of its polyphase matrix. This polyphase representation greatly simplifies the process of constructing a filter bank frame with a given set of properties. Indeed, we use this representation to better understand the special case in which the filters are modulations of each other, namely Gabor frames.

Keywords

Filter Convolution Translation Polyphase Gabor 

References

  1. 1.
    Bernardini, R., Rinaldo, R.: Oversampled filter banks from extended perfect reconstruction filter banks. IEEE Trans. Signal Process. 54, 2625–2635 (2006) CrossRefGoogle Scholar
  2. 2.
    Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22, 274–285 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bölcskei, H., Hlawatsch, F.: Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45, 1057–1071 (1998) MATHCrossRefGoogle Scholar
  4. 4.
    Bölcskei, H., Hlawatsch, F., Feichtinger, H.G.: Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46, 3256–3269 (1998) CrossRefGoogle Scholar
  5. 5.
    Casazza, P.G., Kutyniok, G.: Frames of subspaces. Contemp. Math. 345, 87–113 (2004) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chai, L., Zhang, J., Zhang, C., Mosca, E.: Frame-theory-based analysis and design of oversampled filter banks: direct computational method. IEEE Trans. Signal Process. 55, 507–519 (2007) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chebira, A., Fickus, M., Mixon, D.G.: Filter bank fusion frames. IEEE Trans. Signal Process. 59, 953–963 (2011) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cvetković, Z., Vetterli, M.: Oversampled filter banks. IEEE Trans. Signal Process. 46, 1245–1255 (1998) CrossRefGoogle Scholar
  9. 9.
    Cvetković, Z., Vetterli, M.: Tight Weyl-Heisenberg frames in 2(ℤ). IEEE Trans. Signal Process. 46, 1256–1259 (1998) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) MATHCrossRefGoogle Scholar
  11. 11.
    Fickus, M., Johnson, B.D., Kornelson, K., Okoudjou, K.: Convolutional frames and the frame potential. Appl. Comput. Harmon. Anal. 19, 77–91 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gan, L., Ling, C.: Computation of the para-pseudo inverse for oversampled filter banks: forward and backward Greville formulas. IEEE Trans. Image Process. 56, 5851–5859 (2008) MathSciNetGoogle Scholar
  13. 13.
    Gröchenig, K.: Foundations and Time-Frequency Analysis. Birkhäuser, Boston (2001) Google Scholar
  14. 14.
    Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24, 86–104 (2007) Google Scholar
  15. 15.
    Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part II). IEEE Signal Process. Mag. 24, 115–125 (2007) Google Scholar
  16. 16.
    Kovačević, J., Dragotti, P.L., Goyal, V.K.: Filter bank frame expansions with erasures. IEEE Trans. Inf. Theory 48, 1439–1450 (2002) MATHCrossRefGoogle Scholar
  17. 17.
    Marinkovic, S., Guillemot, C.: Erasure resilience of oversampled filter bank codes based on cosine modulated filter banks. In: Proc. IEEE Int. Conf. Commun., pp. 2709–2714 (2004) Google Scholar
  18. 18.
    Mertins, A.: Frame analysis for biorthogonal cosine-modulated filterbanks. IEEE Trans. Signal Process. 51, 172–181 (2003) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Motwani, R., Guillemot, C.: Tree-structured oversampled filterbanks as joint source-channel codes: application to image transmission over erasure channels. IEEE Trans. Signal Process. 52, 2584–2599 (2004) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Pearson, Upper Saddle River (2009) Google Scholar
  21. 21.
    Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123–151 (2005) CrossRefGoogle Scholar
  22. 22.
    Smith, M., Barnwell, T.: Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process. 34, 434–441 (1986) CrossRefGoogle Scholar
  23. 23.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks, 2nd edn. Cambridge Press, Wellesley (1996) Google Scholar
  24. 24.
    Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1992) Google Scholar
  25. 25.
    Vetterli, M.: Filter banks allowing perfect reconstruction. Signal Process. 10, 219–244 (1986) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vetterli, M., Kovačević, J., Goyal, V.K.: Fourier and Wavelet Signal Processing (2011). http://www.fourierandwavelets.org/

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthew Fickus
    • 1
  • Melody L. Massar
    • 1
  • Dustin G. Mixon
    • 2
  1. 1.Department of MathematicsAir Force Institute of TechnologyWright-Patterson AFBUSA
  2. 2.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations