Traffic flow: models and numerics

  • Axel Klar
  • Raimund Wegener
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We consider kinetic and macroscopic traffic flow modeling. Connections between the models are presented and numerical methods and simulations are shown for different models. In particular, recent issues like traffic instabilities, multivalued fundamental diagrams and stop-and-go behaviour are discussed.


Kinetic Equation Traffic Flow Riemann Problem Macroscopic Model Vehicular Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aw and M. Rascle. Resurrection of second order models of traffic flow? to appear in J. Appl. Math. Google Scholar
  2. 2.
    R.E. Chandler, R. Herman, and E.W. Montroll. Traffic dynamics: Studies in car following. Open Res., 6:165,1958.MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.Google Scholar
  4. 4.
    R. Colombo. Hyperbolic phase transitions in traffic now. preprint. Google Scholar
  5. 5.
    M. Cremer. Der Verkehrsfluβ auf Schnellstraβen. Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
  6. 6.
    C.F. Daganzo. Requiem for second order fluid approximations of traffic flow. Transportation Research B, 29B:277–286, 1995.CrossRefGoogle Scholar
  7. 7.
    J.H. Ferziger and H.G. Kaper. Mathematical Theory of Transport Processes in Gases. North Holland, Amsterdam, 1972.Google Scholar
  8. 8.
    D.C. Gazis, R. Herman, and R. Rothery. Nonlinear follow-the-leader models of traffic flow. Operations Res., 9:545, 1961.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H. Greenberg. An analysis of traffic flow. Oper. Res., 7:79, 1959.CrossRefGoogle Scholar
  10. 10.
    J. Greenberg, A. Klar, and M. Rascle. Congestion on multilane highways, preprint. Google Scholar
  11. 11.
    M. Günther, A. Klar, T. Materne, and R. Wegener. Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations, preprint. Google Scholar
  12. 12.
    D. Helbing. Improved fluid dynamic model for vehicular traffic. Physical Review E, 51:3164,1995.CrossRefGoogle Scholar
  13. 13.
    R. Illner, A. Klar, H. Lange, A. Unterreiter, and R. Wegener. A kinetic model for vehicular traffic: Existence of stationary solutions. J. Math. Anal Appl, 1999.Google Scholar
  14. 14.
    R. Illner, A. Klar, and T. Materne. Vlasov-Fokker-Planck models for multilane traffic flow. preprint. Google Scholar
  15. 15.
    S. Jin and Z. Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl Math., 48:235–276, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic Press, 1974.Google Scholar
  17. 17.
    B.S. Kerner. Experimental features of self-organization in traffic flow. Physical Review Letters, 81:3797, 1998.zbMATHCrossRefGoogle Scholar
  18. 18.
    B.S. Kerner. Congested traffic flow. Transp. Res. Rec., 1678:160, 1999.CrossRefGoogle Scholar
  19. 19.
    B.S. Kerner. Experimental features of the emergence of moving jams in free traffic flow. J. Phys. A, 33:221, 2000.MathSciNetCrossRefGoogle Scholar
  20. 20.
    B.S. Kerner and P. Konhöuser. Physical Review E, 50:54,1994.CrossRefGoogle Scholar
  21. 21.
    A. Klar, R.D. Kuehne, and R. Wegener. Mathematical models for vehicular traffic. Surv. Math. Ind., 6:215,1996.zbMATHGoogle Scholar
  22. 22.
    A. Klar and R. Wegener. Enskog-like kinetic models for vehicular traffic. J. Stat. Phys., 87:91–114,1997.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Klar and R. Wegener. A hierachy of models for multilane vehicular traffic I: Modeling. SIAMJ. Appl Math., 59:983–1001,1998.MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Klar and R. Wegener. A hierachy of models for multilane vehicular traffic II: Numerical investigations. SIAMJ.Appl Math., bf59:1002–1011, 1998.MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Klar and R. Wegener. Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J. Appl. Math., 60:1749–1766, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    R.D. Kühne. Macroscopic freeway model for dense traffic. In N. Vollmuller, editor, 9th Int. Symp. on Transportation and Traffic Theory, VNU Science Press, Utrecht, pp. 21–42, 1984.Google Scholar
  27. 27.
    M. Lampis. On the kinetic theory of traffic flow in the case of a nonnegligible number of queueing vehicles. Transportation Science, 12:16, 1978.MathSciNetCrossRefGoogle Scholar
  28. 28.
    R.J. Leveque. Numerical Methods for Conservation Laws. Birkhäuser, Basel, Boston, Berlin, 1992.zbMATHCrossRefGoogle Scholar
  29. 29.
    A. Nelson, and P. Sopasakis. The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentrations, to appear in Transportation Research. Google Scholar
  30. 30.
    P. Nelson. A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions. Transport Theory and Statistical Physics, 24:383–408,1995.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    S.L. Paveri-Fontana. On Boltzmann like treatments for traffic flow. Transportation Research, 9:225–235,1975.CrossRefGoogle Scholar
  32. 32.
    H.J. Payne. FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record, 722:68–75,1979.Google Scholar
  33. 33.
    W.F. Phillips. Kinetic Model for Traffic Flow. National Technical Information Service, Springfield, Virginia, 1977.Google Scholar
  34. 34.
    I. Prigogine. A Boltzmann like approach to the statistical theory of traffic flow. In R. Herman, editor, Theory of Traffic Flow, p. 158, 1961.Google Scholar
  35. 35.
    I. Prigogine and F.C. Andrews. A Boltzmann like approach for traffic flow. Open Res., 8:789, 1960.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    I. Prigogine and R. Herman. Kinetic Theory of Vehicular Traffic. American Elsevier Publishing Co., New York, 1971.zbMATHGoogle Scholar
  37. 37.
    I. Prigogine, P. Resibois, R. Herman, and R.L. Anderson. On a generalized Boltzmann like approach for traffic flow. Bulletin de la classe des Sciences, 48:805, 1962.zbMATHGoogle Scholar
  38. 38.
    P.I. Richards. Shock waves on the highway. Open Res., 4:42, 1956.MathSciNetCrossRefGoogle Scholar
  39. 39.
    E.P. Todosiev and L.C. Barbosa. A proposed model for the driver vehicle system. Traffic Eng., 34:17,1963.Google Scholar
  40. 40.
    G.B. Whitham. Linear and Nonlinear Waves. Wiley, New York, 1974.zbMATHGoogle Scholar
  41. 41.
    R.Wiedemann. Simulation des Straβenverkehrsflusses. Schriftenreihe des Insti tuts fur Verkehrswesen der Universität Karlruhe, Vol. 8, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Axel Klar
    • 1
  • Raimund Wegener
    • 2
  1. 1.FB MathematikTU DarmstadtDarmstadtGermany
  2. 2.Fraunhofer-ITWMKaiserslauternGermany

Personalised recommendations