Homicidal Chauffeur Game: History and Modern Studies

  • Valerii S. PatskoEmail author
  • Varvara L. Turova
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 11)


“Homicidal chauffeur” game is one of the most well-known model problems in the theory of differential games. “A car” striving as soon as possible to run over “a pedestrian” – this demonstrative model suggested by R. Isaacs turned out to be appropriate for many applied problems. No less remarkable is the fact that the game is a difficult and interesting object for mathematical investigation. This chapter gives a survey of publications on the homicidal chauffeur problem and its modifications.


Backward procedures Differential games Homicidal chauffeur game Numerical constructions Value function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin, J.-P.: Viability Theory. Birkhäuser, Basel (1991)zbMATHGoogle Scholar
  2. 2.
    Averbukh, V.L., Ismagilov, T.R., Patsko, V.S., Pykhteev, O.A., Turova, V.L.: Visualization of value function in time-optimal differential games. In: Handlovičová, A., Komorníková, M., Mikula, K., Ševčovič, D. (eds.) Algoritmy 2000, 15th Conference on Scientific Computing, pp. 207–216. Vysoke Tatry – Podbanske, Slovakia (2000)Google Scholar
  3. 3.
    Bardi, M., Falcone, M., Soravia, P: Numerical methods for pursuit-evasion games via viscosity solutions. In: Bardi, M., Raghavan, T. E. S., Parthasarathy, T. (eds.) Stochastic and Differential Games: Theory and Numerical Methods, Ann. of the Int. Soc. of Dyn. Games, Vol. 4, pp. 105–175. Birkhäuser, Boston (1999)Google Scholar
  4. 4.
    Bernhard, P., Larrouturou, B.: Étude de la barrière pour un problème de fuite optimale dans le plan. Rapport de recherche. INRIA, Sophia-Antipolis (1989)Google Scholar
  5. 5.
    Blaquière, A., Gérard, F., Leitmann, G.: Quantitative and Qualitative Differential Games. Academic Press, New York (1969)Google Scholar
  6. 6.
    Breakwell, J.V., Merz, A.W.: Toward a complete solution of the homicidal chauffeur game. In: Proc. of the 1st Int. Conf. on the Theory and Application of Differential Games, pp. III-1–III-5. Amherst, Massachusetts (1969)Google Scholar
  7. 7.
    Breitner, M.: The genesis of differential games in light of Isaacs’ contributions. J. Optim. Theory Appl. 124(3), 523–559 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Numerical methods for optimal control and differential games. Ceremade CNRS URA 749, University of Paris - Dauphine (1995)Google Scholar
  9. 9.
    Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Set-valued numerical analysis for optimal control and differential games. In: Bardi, M., Raghavan, T. E. S., Parthasarathy, T. (eds.) Stochastic and Differential Games: Theory and Numerical Methods, Ann. of the Int. Soc. of Dyn. Games, Vol. 4, pp. 177–247. Birkhäuser, Boston (1999)Google Scholar
  10. 10.
    Davidovitz, A., Shinar, J.: Two-target game model of an air combat with fire-and-forget all-aspect missiles. J. Optim. Theory Appl. 63(2), 133–165 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Getz, W.M., Pachter, M.: Two-target pursuit-evasion differential games in the plane. J. Optim. Theory Appl. 34(3), 383–403 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Isaacs, R.: Games of pursuit. Scientific report of the RAND Corporation, Santa Monica (1951)Google Scholar
  14. 14.
    Isaacs, R.: Differential Games. Wiley, New York (1965)zbMATHGoogle Scholar
  15. 15.
    Krasovskii, N.N.: Control of a Dynamic System. The Minimum Problem of a Guaranteed Result. Nauka, Moscow (1985) (in Russian)Google Scholar
  16. 16.
    Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)zbMATHGoogle Scholar
  17. 17.
    Laumond, J.-P. (ed.): Robot Motion Planning and Control. Lect. Notes in Control and Inf. Sci. 229. Springer, New York (1998)Google Scholar
  18. 18.
    Lewin, J.: Decoy in pursuit-evasion games. PhD thesis, Stanford University (1973)Google Scholar
  19. 19.
    Lewin, J., Breakwell, J.V.: The surveillance-evasion game of degree. J. Optim. Theory Appl. 16(3–4), 339–353 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lewin, J., Olsder, G.J.: Conic surveillance evasion. J. Optim. Theory Appl. 27(1), 107–125 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Markov, A.A.: Some examples of the solution of a special kind of problem on greatest and least quantities. Soobscenija Charkovskogo Matematiceskogo Obscestva 2, 1(5, 6), 250–276 (1889) (in Russian)Google Scholar
  22. 22.
    Merz, A.W.: The homicidal chauffeur – a differential game. PhD thesis, Stanford University (1971)Google Scholar
  23. 23.
    Merz, A.W.: The homicidal chauffeur. AIAA Journal 12(3), 259–260 (1974)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Merz, A.W.: To pursue or to evade – that is the question. J. Guid. Control Dyn. 8(2), 161–166 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Meyer, A., Breitner, M.H., Kriesell, M.: A pictured memorandum on synthesis phenomena occurring in the homicidal chauffeur game. In: Martin-Herran, G., Zaccour, G. (eds.) Proceedings of the Fifth International ISDG Workshop, pp. 17–32. Int. Soc. of Dyn. Games, Segovia (2005)Google Scholar
  26. 26.
    Mikhalev, D.K., Ushakov, V.N.: Two algorithms for approximate construction of the set of positional absorption in the game problem of pursuit. Autom. Remote Control 68(11), 2056–2070 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mitchell, I.: Application of level set methods to control and reachability problems in continuous and hybrid systems. PhD Thesis, Stanford University (2002)Google Scholar
  28. 28.
    Olsder, G.J., Breakwell, J.V.: Role determination in aerial dogfight. Int. J. Game Theory 3, 47–66 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Patsko, V.S., Turova, V.L.: Level sets of the value function in differential games with the homicidal chauffeur dynamics. Int. Game Theory Review 3(1), 67–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Patsko, V.S., Turova, V.L.: Numerical investigation of the value function for the homicidal chauffeur problem with a more agile pursuer. In: Bernhard, P., Gaitsgory, V., Pourtallier, O. (eds.) Advances in Dynamic Games and Their Applications: Analytical and Numerical Developments, Ann. of the Int. Soc. of Dyn. Games, Vol. 10, pp. 231–258. Birkhäuser, Boston (2009)Google Scholar
  31. 31.
    Raivio, T., Ehtamo, H.: On numerical solution of a class of pursuit-evasion games. In: Filar, J.A., Mizukami, K., Gaitsgory, V. (eds.) Advances in Dynamic Games and Applications, Ann. of the Int. Soc. of Dyn. Games, Vol. 5, pp. 177–192. Birkhäuser, Boston (2000)Google Scholar
  32. 32.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.Technische Universität MünchenGarching bei MünchenGermany

Personalised recommendations