Global dynamics in adaptive models of collective choice with social influence

  • Gian-Italo BischiEmail author
  • Ugo Merlone
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter we present a unified approach for modelling the diffusion of alternative choices within a population of individuals in the presence of social externalities, starting from two particular discrete-time dynamic models – Galam’s model of rumors spreading [10] and a formalization of Schelling’s binary choices [7]. We describe some peculiar properties of discrete-time (or event-driven) dynamic processes and we show how some long-run (asymptotic) outcomes emerging from repeated short time decisions can be seen as emerging properties, sometimes unexpected, or difficult to be forecasted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avrutin V., Schanz M.: Multi-parametric bifurcations in a scalar piecewise-linear map, Nonlinearity, 19, 531–552 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Avrutin V., Schanz M., Banerjee S.: Multi-parametric bifurcations in a piecewise-linear discontinuous map, Nonlinearity, 19, 1875–1906 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Banerjee S., Grebogi C.: Border-collision bifurcations in two-dimensional piecewise smooth maps, Phys. Rev. E, 59(4), 4052–4061, (1999)CrossRefGoogle Scholar
  4. 4.
    Banerjee S., Karthik M.S., Yuan G., Yorke J.A.: Bifurcations in One-Dimensional Piecewise Smooth Maps - Theory and Applications in Switching Circuits, IEEE Trans. Circuits Syst.-I: Fund. Theory Appl. 47(3), 389–394 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bischi G.I., Gardini L., Merlone U.: Inpulsivity in binary choices and the emergence of periodicity, Disc. Dyn. Nat. Soc., Vol 2009, Article ID 407913, 22 pages, doi:10.1155/2009/407913 (2009)MathSciNetGoogle Scholar
  6. 6.
    Bischi G.I., Gardini L., Merlone U.: Periodic cycles and bifurcation curves for one-dimensional maps with two discontinuities, J. Dyn. Sys. Geom. Theor., 7, 101–124 (2009)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bischi G.I., Merlone U.: Global dynamics in binary choice models with social influence, J. Math. Soc. 33(4), 277–302 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bischi G.I., Merlone U.: Binary choiches in small and large groups: A unified model, Phys. A, doi:10.1016/j.physa.2009.10.010 (2009)Google Scholar
  9. 9.
    Ellero A., Fasano G., Sorato A.: A modified Galam’s model for word-of-mouth information exchange. Physica A, 388, 3901–3910 (2009)CrossRefGoogle Scholar
  10. 10.
    Galam S.: Modelling rumors: the no plane pentagon french hoax case. Physica A, 320, 571–580 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Galam S.: Heterogeneous beliefs, segregation, and extremism in the making of public opinions, Phys. Rev. E, 71, 046123-1-5 (2005)Google Scholar
  12. 12.
    Galam S., Sociophysics: A review of Galam models, Int. J. Modern Phys. C, 19, 409–440 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Galam S., Chopard B., Masselot A., Droz M.: “Competing Species Dynamics”, The Eur. Phys. J. B, 4, 529–531 (1998)CrossRefGoogle Scholar
  14. 14.
    Goltz S.M.: Can’t Stop on a Dime, J. Org. Behav. Manag., 19(1), 37–63 (1999)CrossRefGoogle Scholar
  15. 15.
    Granovetter M.: Threshold models of collective behavior, Am. J. Soc., 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  16. 16.
    Leonov N.N.: Map of the line onto itself, Radiofish, 3(3), 942–956 (1959)Google Scholar
  17. 17.
    Leonov N.N.: Discontinuous map of the straight line, Dohk. Ahad. Nauk. SSSR. 143(5), 1038–1041 (1962)MathSciNetGoogle Scholar
  18. 18.
    Mira C.: Sur les structure des bifurcations des diffeomorphisme du cercle, C.R. Acad. Sci. Paris, Series A, 287, 883–886 (1978)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Mira C.: Chaotic Dynamics. World Scientific, Singapore (1987)zbMATHGoogle Scholar
  20. 20.
    Mira, C., Gardini, L., Barugola, A., Cathala J.C.: Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific, Singapore (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Namatame A.: Adaptation and Evolution in Collective Systems. World Scientific, Singapore (2006)Google Scholar
  22. 22.
    Nusse H.E., Yorke J.A.: Border-collision bifurcations including period two to period three for piecewise smooth systems, Physica D 57, 39–57 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Patton J.H., Stanford M.S., Barratt E.S.: Factor structure of the barratt impulsiveness scale, J. Clin. Psyc., 51, 768–774 (1995)CrossRefGoogle Scholar
  24. 24.
    Schelling T.C.: Hockey helmets, concealed weapons, and daylight saving, J. Conf. Res., 17(3), 381–428 (1973)CrossRefGoogle Scholar
  25. 25.
    Schelling T.C.: Micromotives and Macrobehavior. W.W. Norton, New York (1978)Google Scholar
  26. 26.
    Wijeratne A.W., Ying Su Y., Wei J.: Hopf bifurcation analysis of diffusive bass model with delay under “negative-word-of-mouth”. Int. J. Bif. Ch. 19, 3, 1059–1067 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Young H.P.: Individual Strategy and Social Structure. Princeton University Press, Princeton (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.DEMQ (Dipartimento di Economia e Metodi Quantitativi)Università di Urbino “Carlo Bo”UrbinoItaly
  2. 2.Statistics and Applied Mathematics DepartmentUniversità di TorinoTorinoItaly

Personalised recommendations