# The Distribution of Primes and the Riemann Zeta Function

• Emil Grosswald
Part of the Modern Birkhäuser Classics book series (MBC)

## Abstract

We recall that the problem of the distribution of primes had been raised at least as far back as the Greek antiquity. The proof of our Theorem 3.9, that there are infinitely many primes, appears in Euclid (Book 9, Section 20), and Eratosthenes devised a systematic method for obtaining all primes up to any given number x.

## Keywords

Zeta Function Critical Line Riemann Zeta Function Riemann Hypothesis Integral Converge
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

1. 1.
L. Ahlfors, Complex Analysis, 2nd ed. N.Y.: McGraw-Hill, 1966.
2. 2.
R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61 (1979) 11–13.
3. 2a.
4. 3.
5. 4.
R. J. Backlund, Sur les zéros de la fonction Ç(s) de Riemann, Comptes Rendus de l’Acad. Sci. (Paris) 158 (1914) 1979–1981.
6. 5.
7. 6.
R. P. Brent, Mathematics of Computation 33 (1979) 1361–1372.
8. 7.
V. Brun, Le crible d’Eratosthène et le théorème de Goldbach, Norske Videnskaps-selskapets Skrifter I, No. 3. Kristiana (Oslo), 1920.
9. 8.
V. Brun, La série $$\frac{1}{5} + \frac{1}{7} + \frac{1}{{11}} + \frac{1}{{13}} + \cdots$$ est convergente ou finie, Bull, des Sciences Math. (2), 43 (1919) 100–104, 124–128.
10. 9.
Chen, Jing-run, On the representation of a large, even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973) 157–176.
11. 10.
H. M. Edwards, Riemann’s Zeta Function. New York: Academic Press, 1974.
12. 11.
L. Euler, Institutiones Calculi Differentialis, Pt. 2, Chapters 5 and 6. St. Petersburg: Acad. Imper. Scient. Petropolitanae, 1755; Opera Omnia (1), vol. 10.Google Scholar
13. 12.
J. P. Gram, Note sur les zéros de la fonction ζ(s) de Riemann, Acta Math. 27 (1903) 289–304.
14. 13.
G. H. Hardy, Sur les zéros de la fonction ζ(s) de Riemann, Comptes Rendus de VAcad. des Sei. (Paris) 158 (1914) 1012–1014.
15. 14.
J. I. Hutchinson, On the zeros of Riemann zeta function, Transactions of the Amer. Math. Soc. 27 (1925) 49–60.
16. 15.
D. Jackson, Fourier series and Orthogonal Polynomials, Carus Monograph, No. 6. Menasha, Wise: G. Banta, 1941.Google Scholar
17. 16.
D. H. Lehmer, On the roots of the Riemann zeta function, Acta Mathem. 95 (1956) 291–298.
18. 17.
D. H. Lehmer, Extended computation of the Riemann zeta function, Mathematika 3 (1956) 102–108.
19. 18.
N. Levinson, More than a third of zeros of Riemann’s zeta function are on σ = 1/2, Advances in Mathematics 13 (1974) 383–436.
20. 19.
E. Meissel, Mathem. Annalen 2 (1870) 636–642;
21. 19a.
E. Meissel, Mathem. Annalen 3 (1871) 523–525;
22. 19b.
E. Meissel, Mathem. Annalen 25 (1885) 251–257.
23. 20.
M. Mikolás, Differentiation and integration of complex order..., Acta Mathematica Acad. Sci. Hungar. 10 (1959) 77–124.
24. 21.
H. Rademacher, Beiträge zur Viggo Brunschen Methode in der Zahlentheorie, Abhandlungen aus dem Math. Seminar der Hamburger Univ. 3 (1924) 12–30.
25. 22.
A. Rényi, On the representation of even integers as sum of a prime and an almost prime, Izvestia Akad. Nauk SSSR, Ser. Mat. 12 (1948) 57–78;
26. 22.
A. Rényi, On the representation of even integers as sum of a prime and an almost prime, AMS Translation Series 2, vol. 19 (1962) 299–321.
27. 23.
B. Riemann, Collected Works of B. Riemann, edited by H. Weber, 2nd ed. (1892/1902). New York: Dover Publishing, 1953.Google Scholar
28. 24.
J. B. Rosser, J. M. Yohe, L. Schoenfeld, Information Processing, 1968. Proc. IFIP Congress Edinburgh, 1968, vol. 1, pp. 70–76. Amsterdam: North Holland, 1969.Google Scholar
29. 25.
A. Selberg, On the zeros of the Riemann zeta function on the critical line, Arch, for Math, og Naturv. 45 (1942) 101–114.
30. 26.
A. Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh. Trondheim, (No. 18) 19 (1947) 64–67.
31. 27.
A. Selberg, The general sieve method...in prime number theory, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1 (1950) 286–292.Google Scholar
32. 28.
E. C. Titchmarsh, The Theory of Functions, 2nd ed. Oxford: Clarendon Press, 1939.
33. 29.
E. C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford: Clarendon Press, 1951.
34. 30.
Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 6 (1956) 565–582;
35. 30a.
Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Acta Math. Sinica 10 (1960) 168–181;Google Scholar
36. 30b.
Wang Yuan, Several papers on the representation of large integers as a sum of a prime and an almost prime; in particular, Sciencia Sinica 11 (1962) 1033–1054 (this is essentially an English translation of the previous paper, plus a most interesting Appendix).Google Scholar
37. 31.
D. V. Widder, Advanced Calculus, 2nd ed. Englewood Cliffs, N.J.: Prentice-Hall, 1961.Google Scholar