Advertisement

Numerical Investigation of the Value Function for the Homicidal Chauffeur Problem with a More Agile Pursuer

  • Valerii S. PatskoEmail author
  • Varvara L. Turova
Chapter
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 10)

Abstract

The paper is devoted to the investigation of a time-optimal differential game in which the pursuer possesses increased control capabilities comparing to the classical homicidal chauffeur problem. Namely, the pursuer steers not only the angular velocity of turn but can additionally change the magnitude of his linear velocity. For such a new variant of the dynamics with non-scalar control of the pursuer, a complete description of families of semipermeable curves is given and the dependence of the structure of level sets of the value function on a parameter that defines the bound on the magnitude of the pursuer’s velocity is explored by numerical methods.

Keywords

Time-optimal control pursuit-evasion differential game value function semipermeable curves homicidal chauffeur game numerical construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bardi M., Falcone M., Soravia P., Numerical methods for pursuit-evasion games via viscosity solutions, in M. Bardi, T.E.S. Raghavan, T. Parthasarathy (Eds.), Stochastic and Differential Games: Theory and Numerical Methods. Annals of the International Society of Dynamic Games 4, Birkhäuser, Boston, (1999), 105–175.Google Scholar
  2. [2]
    Bernhard P., Larrouturou B., Etude de la barriere pour un probleme de fuite optimale dans le plan, Rapport de Recherche, INRIA, Sophia-Antipolis, (1989).Google Scholar
  3. [3]
    Boissonnat J. D., Cerezo A., Leblond J., Shortest paths of bounded curvature in the plane, Proc. IEEE Conf. Robotics and Automation, Nice, France, (1992).Google Scholar
  4. [4]
    Breakwell J. V., Merz A. W., Toward a complete solution of the homicidal chauffeur game, Proc. of the 1st Int. Conf. on the Theory and Applications of Differential Games, Amherst, Massachusetts, (1969).Google Scholar
  5. [5]
    Breakwell J. V., Zero-sum differential games with terminal payoff, in P. Hagedorn, H. W. Knobloch, G. J. Olsder (Eds.), Differential Games and Applications. Lecture Notes in Control and Information Sciences, Springer, Berlin, (1977), 70–95.Google Scholar
  6. [6]
    Cardaliaguet P., Quincampoix M., Saint-Pierre P., Numerical methods for optimal control and differential games, Ceremade CNRS URA 749, University of Paris-Dauphine, (1995).Google Scholar
  7. [7]
    Cockayne E. J., Hall G. W. C., Plane motion of a particle subject to curvature constraints, SIAM J. Control 13(1), (1975), 197–220.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Dubins L. E., On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Amer. J. Math. 79, (1957), 497–516.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Isaacs R., Games of pursuit, Scientific report of the RAND Corporation, Santa Monica, (1951).Google Scholar
  10. [10]
    Isaacs R., Differential Games, John Wiley, New York, (1965).zbMATHGoogle Scholar
  11. [11]
    Laumond J.-P. (ed.), Robot Motion Planning and Control, Lecture Notes in Control and Information Sciences 229, Springer, New York, (1998).Google Scholar
  12. [12]
    Lewin J., Breakwell J. V., The surveillance-evasion game of degree, JOTA 16(3/4), (1975), 339–353.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Lewin J., Olsder, G. J., Conic surveillance-evasion, JOTA 27(1), (1979), 107–125.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Markov A. A., Some examples of the solution of a special kind of problem on greatest and least quantities, Soobscenija Charkovskogo matematiceskogo obscestva, Ser.2,1, NN5,6, (1889), 250–276 (in Russian).Google Scholar
  15. [15]
    Merz A. W., The homicidal chauffeur – a differential game, PhD Thesis, Stanford University, (1971).Google Scholar
  16. [16]
    Patsko V. S., Turova V. L., Level sets of the value function in differential games with the homicidal chauffeur dynamics, Int. Game Theory Review 3(1), (2001), 67–112.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Patsko V. S., Turova V. L., Families of semipermeable curves in differential games with the homicidal chauffeur dynamics, Automatica 40(12), (2004), 2059–2068.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Pecsvaradi T., Optimal horizontal guidance law for aircraft in the terminal area, IEEE Trans. on Automatic Control AC-17(6), (1972), 763–772.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Raivio T., Ehtamo H., On the numerical solution of a class of pursuit-evasion games, in J. Filar, K. Mizukami, V. Gaitsgory (Eds.), Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games 5, Birkhäuser, Boston, (2000), 177–192.Google Scholar
  20. [20]
    Reeds J. A., Shepp L. A., Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145(2), (1990), 367–393.MathSciNetGoogle Scholar
  21. [21]
    Souères P., Fourquet J.-Y., Laumond J.-P., Set of reachable positions for a car, IEEE Trans. on Automatic Control 39(8), (1994), 1626–1630.zbMATHCrossRefGoogle Scholar
  22. [22]
    Souères P., Laumond J-P., Shortest paths synthesis for a car-like robot, IEEE Trans. on Automatic Control 41(5), (1996), 672–688.zbMATHCrossRefGoogle Scholar
  23. [23]
    Souères P., Minimum-length trajectories for a car: an example of the use of Boltianskii's sufficient conditions for optimality, IEEE Trans. on Automatic Control 52(2), (2007), 323–327.CrossRefGoogle Scholar
  24. [24]
    Sussmann H. J., Tang W., Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Rutgers University, New Brunswick, NJ, Rep. SYCON-91–10, (1991).Google Scholar
  25. [25]
    Vendittelli M., Laumond J.-P., Nissoux C., Obstacle distance for car-like robots, IEEE Trans. on Robotics and Automation 15(4), (1999), 678–691.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsEkaterinburgRussia
  2. 2.Technical University of MunichGarchingGermany

Personalised recommendations