Advertisement

Graphs, Strings, and Actions

  • Ralph M. KaufmannEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 270)

Summary

In this paper, we revisit the formalism of graphs, trees, and surfaces which allows one to build cell models for operads of algebraic interest and represent them in terms of a dynamical picture of moving strings—hence relating string dynamics to algebra and geometry. In particular, we give a common framework for solving the original version of Deligne’s conjecture, its cyclic, A , and cyclic–A versions. We furthermore study a question raised by Kontsevich and Soibelman about models of the little discs operad. On one hand, we give a new smooth model and on the other hand, a minimally small cell model for the A case. Further geometric results these models provide are novel decompositions and realizations of cyclohedra as well as explicit simple cell representatives for Dyer–Lashof–Cohen operations. We also briefly discuss the generalizations to moduli space actions and applications to string topology as well as further directions.

Key words

moduli spaces operads string theory Hochschild cohomology cohomology operations manifolds cell models foliations non-commutative geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AK.
    S. Araki, T. Kudo. Topology of H n -spaces and H-squaring operations. Mem. Fac. Sci. Kyūsyū Univ. Ser. A, 1956, pp. 85–120.Google Scholar
  2. BF.
    C. Berger and B. Fresse. Une décomposition prismatique de l’opérade de Barratt-Eccles. C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 365–370.zbMATHMathSciNetGoogle Scholar
  3. Co.
    F. R. Cohen. The homology of CC n+1 -spaces, n ≥ 0, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, Berlin, 1976, pp.207–351.Google Scholar
  4. Ch.
    D. Chataur. A bordism approach to string topology. Int. Math. Res. Not. 2005, no. 46, 2829–2875.CrossRefMathSciNetGoogle Scholar
  5. CG.
    R. L. Cohen and V. Godin. A polarized view of string topology. Topology, geometry and quantum field theory, 127–154, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004.Google Scholar
  6. CJ.
    R. L. Cohen and J. D. S. Jones. A homotopy theoretic realization of string topology. Math. Ann. 324 (2002), no. 4, 773–798.zbMATHCrossRefMathSciNetGoogle Scholar
  7. CS.
    M. Chas and D. Sullivan. String Topology. Preprint math.GT/9911159. To appear in Ann. of Math.Google Scholar
  8. CV.
    J. Conant and K. Vogtmann. On a theorem of Kontsevich. Algebr. Geom. Topol. 3 (2003), 1167–1224.zbMATHCrossRefMathSciNetGoogle Scholar
  9. D.
    P. Deligne. Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, 111–195.Google Scholar
  10. DL.
    E. Dyer, R. K. Lashof. Homology of iterated loop spaces. Amer. J. Math., 1962, 84, 35–88.zbMATHCrossRefMathSciNetGoogle Scholar
  11. G.
    M. Gerstenhaber. The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267–288.CrossRefMathSciNetGoogle Scholar
  12. Ge.
    E. Getzler. Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65–78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993.Google Scholar
  13. GV.
    A. A. Voronov and M. Gerstenkhaber. Higher-order operations on the Hochschild complex. (Russian) Funktsional. Anal. i Prilozhen. 29 (1995), no. 1, 1–6, 96; translation in Funct. Anal. Appl. 29 (1995).Google Scholar
  14. J.
    J. D. S. Jones. Cyclic homology and equivariant homology. Inv. Math. 87 (1987), 403–423.zbMATHCrossRefGoogle Scholar
  15. Kad.
    T. Kadeishvili. The structure of the A()-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988).Google Scholar
  16. K1.
    R. M. Kaufmann. On several varieties of cacti and their relations. Algebraic & Geometric Topology 5 (2005), 2–300.CrossRefMathSciNetGoogle Scholar
  17. K2.
    R. M. Kaufmann. On Spineless Cacti, Deligne’s Conjecture and Connes–Kreimer’s Hopf Algebra. Topology 46, 1 (2007), 39–88.CrossRefMathSciNetGoogle Scholar
  18. K3.
    R. M. Kaufmann. A proof of a cyclic version of Deligne’s conjecture via Cacti. Math. Res. Letters 15, 5(2008), 901–921.MathSciNetGoogle Scholar
  19. K4.
    R. M. Kaufmann. Moduli space actions on the Hochschild CoChains of a Frobenius algebra I: Cell Operads. Journal of Noncommutative Geometry 1, 3(2007) 333–384.CrossRefMathSciNetGoogle Scholar
  20. K5.
    R. M. Kaufmann. Moduli space actions on the Hochschild cochains of a Frobenius algebra II: Correlators 2, 3(2008), 283–332.MathSciNetGoogle Scholar
  21. KP.
    R. M. Kaufmann and R. C. Penner. Closed/open string diagrammatics. Nucl. Phys. B748 (2006), 3, 335–379.CrossRefMathSciNetGoogle Scholar
  22. KLP.
    R. M. Kaufmann, M. Livernet and R. C. Penner. Arc Operads and Arc Algebras. Geometry and Topology 7 (2003), 511–568.zbMATHCrossRefMathSciNetGoogle Scholar
  23. KSch.
    R. M. Kaufmann and R. Schwell. Associahedra, Cyclohedra, and a Topological Solution to the A -Deligne Conjecture. Advances in Math. to appear.Google Scholar
  24. Ko1.
    M. Kontsevich. Formal (non)commutative symplectic geometry. The Gel’fand Mathematical Seminars, 1990–1992, 173–187, Birkhäuser Boston, Boston, MA, 1993.Google Scholar
  25. Ko2.
    M. Kontsevich. Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, Vol. II (Paris, 1992), 97–121, Progr. Math., 120, Birkhäuser, Basel, 1994.Google Scholar
  26. Ko3.
    M. Kontsevich. Operads and Motives in Deformation Quantization. Lett. Math. Phys. 48 (1999) 35–72.zbMATHCrossRefMathSciNetGoogle Scholar
  27. KS.
    M. Kontsevich and Y. Soibelman. Deformations of algebras over operads and Deligne’s conjecture. Conférence Moshé Flato 1999, Vol. I (Dijon), 255–307, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar
  28. KLi1.
    A. Kapustin and Y. Li. D-branes in Landau-Ginzburg models and algebraic geometry. JHEP 0312, 005 (2003).CrossRefMathSciNetGoogle Scholar
  29. KLi2.
    A. Kapustin and Y. Li. Topological correlators in Landau-Ginzburg models with boundaries. Preprint hep-th/0305136.Google Scholar
  30. KR.
    A. Kapustin and L. Rozansky. On the relation between open and closed topological strings. Commun. Math. Phys. 252 (2004) 393–414.zbMATHCrossRefMathSciNetGoogle Scholar
  31. L.
    J–L. Loday. Cyclic Homology. Appendix E by María O. Ronco. Second edition.  Chapter 13 by the author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin, 1998.
  32. Me.
    S. A. Merkulov. De Rham model for string topology. Int. Math. Res. Not. 2004, no. 55, 2955–2981.CrossRefMathSciNetGoogle Scholar
  33. MS1.
    J. E. McClure and J. H. Smith. A solution of Deligne’s Hochschild cohomology conjecture. Recent progress in homotopy theory (Baltimore, MD, 2000), 153–193, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  34. MS2.
    J. E. McClure and J. H. Smith. Multivariable cochain operations and little n-cubes. J. Amer. Math. Soc. 16 (2003), no. 3, 681–704.zbMATHCrossRefMathSciNetGoogle Scholar
  35. MS3.
    James E. McClure and Jeffrey H. Smith. Cosimplicial objects and little n-cubes. I. Amer. J. Math. 126 (2004), no. 5, 1109–1153.zbMATHGoogle Scholar
  36. MS4.
    James E. McClure and Jeffrey H. Smith. Operads and cosimplicial objects: an introduction. Axiomatic, Enriched and Motivic Homotopy Theory. Proceedings of a NATO Advanced Study Institute. Edited by J.P.C. Greenlees. Kluwer 2004.Google Scholar
  37. MSS.
    M. Markl, S. Shnider and J. Stasheff. Operads in algebra, topology and physics. Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, 2002.Google Scholar
  38. S1.
    D. Sullivan. Sigma models and string topology. Graphs and patterns in mathematics and theoretical physics, 1–11, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  39. S2.
    D. Sullivan. Open and closed string field theory interpreted in classical algebraic topology. Topology, geometry and quantum field theory, 344–357, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004.Google Scholar
  40. T.
    D. Tamarkin. Another proof of M. Kontsevich formality theorem. Preprint math/9803025.Formality of Chain Operad of Small Squares. Lett. Math. Phys. 66 (2003), no. 1-2, 65–72.zbMATHMathSciNetGoogle Scholar
  41. Tou.
    V. Tourtchine. Dyer-Lashof-Cohen operations in Hochschild cohomology. Algebr. Geom. Topol. 6 (2006), 875–894.zbMATHCrossRefMathSciNetGoogle Scholar
  42. TZ.
    T. Tradler and M. Zeinalian. On the cyclic Deligne conjecture. J. Pure Appl. Algebra 204 (2006), no. 2, 280–299.zbMATHCrossRefMathSciNetGoogle Scholar
  43. Vo1.
    A. A. Voronov. Homotopy Gerstenhaber algebras. Conférence Moshé Flato 1999, Vol. II (Dijon), 307–331, Math. Phys. Stud., 22, Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar
  44. Vo2.
    A. A. Voronov. Notes on universal algebra. Graphs and Patterns in Mathematics and Theoretical Physics (M. Lyubich and L. Takhtajan, eds.), Proc. Sympos. Pure Math., vol. 73. AMS, Providence, RI, 2005, pp. 81–103.Google Scholar
  45. We.
    C. Westerlan. Dyer-Lashof operations in the string topology of spheres and projective spaces. Math. Z. 250 (2005), no. 3, 711–727.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations