Algebra, Arithmetic, and Geometry pp 383-398

Part of the Progress in Mathematics book series (PM, volume 270)

A Generalization of the Capelli Identity

Chapter

Summary

We prove a generalization of the Capelli identity. As an application we obtain an isomorphism of the Bethe subalgebras actions under the \(({g l}_{N},{g l}_{M})\) duality.

Key words

Capelli identity Gaudin model \(({g l}_{N} g {l}_{M})\) duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C1.
    A. Capelli, Über die Zurückführung der Cayley’schen Operation Ω auf gewöhnliche Polar-Operationen (German) Math. Ann. 29 (1887), no. 3, 331–338.MathSciNetGoogle Scholar
  2. C2.
    A. Capelli, Sur les opérations dans la théorie des formes algébriques (French) Math. Ann. 37 (1890), no. 1, 1–37.MathSciNetGoogle Scholar
  3. FFR.
    B. Feigin, E. Frenkel, N. Reshetikhin, Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys. 166 (1994), no. 1, 27–62.MATHCrossRefMathSciNetGoogle Scholar
  4. GR.
    I.M. Gelfand, V. Retakh, Theory of noncommutative determinants, and characteristic functions of graphs (Russian) Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, 1–20, 96; translation in Funct. Anal. Appl. 26 (1992), no. 4, 231–246 (1993).CrossRefMathSciNetGoogle Scholar
  5. HU.
    R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991), no. 3, 565–619.MATHCrossRefMathSciNetGoogle Scholar
  6. KS.
    B. Kostant, S. Sahi, Jordan algebras and Capelli identities, Invent. Math. 112 (1993), no. 3, 657–664.MATHCrossRefMathSciNetGoogle Scholar
  7. MN.
    A. Molev, M. Nazarov, Capelli identities for classical Lie algebras, Math. Ann. 313 (1999), no. 2, 315–357.MATHCrossRefMathSciNetGoogle Scholar
  8. N1.
    M. Nazarov, Capelli identities for Lie superalgebras, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 6, 847–872.MATHGoogle Scholar
  9. N2.
    M. Nazarov, Yangians and Capelli identities, Kirillov’s seminar on representation theory, 139–163, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  10. NUW.
    M. Noumi, T. Umeda, M. Wakayama, A quantum analogue of the Capelli identity and an elementary differential calculus on GL q (n), Duke Math. J. 76 (1994), no. 2, 567–594.MATHCrossRefMathSciNetGoogle Scholar
  11. MV1.
    E. Mukhin and A. Varchenko, Spaces of quasi-polynomials and the Bethe Ansatz, math.QA/0604048, 1–29.Google Scholar
  12. MTV1.
    E. Mukhin, V. Tarasov and A. Varchenko, Bethe eigenvectors of higher transfer matrices, J. Stat. Mech. (2006) P08002.Google Scholar
  13. MTV2.
    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and \(({\rbrace l}_{N},{\rbrace l}_{M})\) Dualities, Func. Anal. and Other Math., 1 (1), (2006), 55–80.MathSciNetGoogle Scholar
  14. MTV3.
    E. Mukhin, V. Tarasov and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, math.AG/0512299, 1–18.Google Scholar
  15. MTV4.
    E. Mukhin, V. Tarasov and A. Varchenko, Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel, math.QA/0703893, 1–36.Google Scholar
  16. O.
    A. Okounkov, Quantum immanants and higher Capelli identities, Transform. Groups 1 (1996), no. 1–2, 99–126.MATHCrossRefMathSciNetGoogle Scholar
  17. R.
    L. Rybnikov, Argument Shift Method and Gaudin Model, math.RT/0606380, 1–15.Google Scholar
  18. T.
    D. V. Talalaev, The quantum Gaudin system (Russian) Funktsional. Anal. i Prilozhen. 40 (2006), no. 1, 86–91; translation in Funct. Anal. Appl. 40 (2006), no. 1, 73–77.MathSciNetGoogle Scholar
  19. TV.
    V. Tarasov, A. Varchenko, Duality for Knizhnik-Zamolodchikov and dynamical equations, The 2000 Twente Conference on Lie Groups (Enschede). Acta Appl. Math. 73 (2002), no. 1–2, 141–154.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University – Purdue University IndianapolisIndianapolisUSA
  2. 2.St. Petersburg Branch of Steklov Mathematical InstituteSt. PetersburgRussia
  3. 3.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations