Finite Subgroups of the Plane Cremona Group

Part of the Progress in Mathematics book series (PM, volume 269)


This paper completes the classic and modern results on classification of conjugacy classes of finite subgroups of the group of birational automorphisms of the complex projective plane.

Key words

Cremona group Del Pezzo surfaces conic bundles 


  1. 1.
    A. Adem, J. Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften, 309, Springer-Verlag, Berlin, 1994.Google Scholar
  2. 2.
    M. Alberich-CarramiÃČÂćÃćâĂŽÂňÃćâĆňÅŞana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, 1769. Springer-Verlag, Berlin, 2002.Google Scholar
  3. 3.
    L. Autonne, Recherches sur les groupes d'ordre fini contenus dans le groupe Cremona, Premier Mémoire Généralités et groupes quadratiques, J. Math. Pures et Appl., (4) 1 (1885), 431–454.Google Scholar
  4. 4.
    S. Bannai, H. Tokunaga, A note on embeddings of \(S_4\) and \(A_5\) into the Cremona group and versal Galois covers, Publ. Res. Inst. Math. Sci. 43 (2007), 1111–1123.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    L. Bayle, A. Beauville, Birational involutions of \(P^2\), Asian J. Math. 4 (2000), 11–17.MATHMathSciNetGoogle Scholar
  6. 6.
    J. Blanc, Finite abelian subgroups of the Cremona group of the plane, thesis, Univ. of Geneva, 2006.Google Scholar
  7. 7.
    J. Blanc, Elements and cyclic subgroups of finite order of the Cremona group, to appear in Com. Math. Helv.Google Scholar
  8. 8.
    A. Beauville, J. Blanc, On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris 339 (2004), 257–259.MATHMathSciNetGoogle Scholar
  9. 9.
    A. Beauville, p-elementary subgroups of the Cremona group, J. Algebra, 314 (2007), 553–564.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    E. Bertini, Ricerche sulle trasformazioni univoche involutorie nel piano, Annali di Mat. Pura Appl. (2) 8 (1877), 254–287.MathSciNetGoogle Scholar
  11. 11.
    H. Blichfeldt, Finite collineation groups, with an introduction to the theory of operators and substitution groups, Univ. of Chicago Press, Chicago, 1917.Google Scholar
  12. 12.
    A. Bottari, Sulla razionalità dei piani multipli \(\{x,y,\sqrt[n]{F(x,y)}\}\), Annali di Mat. Pura Appl. (3) 2 (1899), 277–296.Google Scholar
  13. 13.
    A. Calabri, Sulle razionalità dei piani doppi e tripli cyclici, Ph.D. thesis, Univ. di Roma “La Sapienza”, 1999.Google Scholar
  14. 14.
    A. Calabri, On rational and ruled double planes, Annali. di Mat. Pura Appl. (4) 181 (2002), 365–387.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    R. Carter, Conjugacy classes in the Weyl group. in “Seminar on Algebraic Groups and Related Finite Groups”, The Institute for Advanced Study, Princeton, N.J., 1968/69, pp. 297–318, Springer, Berlin.Google Scholar
  16. 16.
    G. Castelnuovo, Sulle razionalità delle involutioni piani, Math. Ann, 44 (1894), 125–155.CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Castelnuovo, F. Enriques, Sulle condizioni di razionalità dei piani doppia, Rend. Circ. Mat. di Palermo, 14 (1900), 290–302.CrossRefMATHGoogle Scholar
  18. 18.
    A. Coble, Algebraic geometry and theta functions (reprint of the 1929 edition), A.M.S. Coll. Publ., v. 10. A.M.S., Providence, RI, 1982. MR0733252 (84m.14001)Google Scholar
  19. 19.
    J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Oxford Univ. Press, Eynsham, 1985.MATHGoogle Scholar
  20. 20.
    J. Conway, D. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003.MATHGoogle Scholar
  21. 21.
    J. Coolidge, A treatise on algebraic plane curves, Dover Publ. New York. 1959.MATHGoogle Scholar
  22. 22.
    A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), 223–254.MATHMathSciNetGoogle Scholar
  23. 23.
    T. de Fernex, On planar Cremona maps of prime order, Nagoya Math. J. 174 (2004), 1–28.MATHMathSciNetGoogle Scholar
  24. 24.
    T. de Fernex, L. Ein, Resolution of indeterminacy of pairs, in “Algebraic geometry”, pp. 165–177, de Gruyter, Berlin, 2002.Google Scholar
  25. 25.
    M. Demazure, Surfaces de Del Pezzo, I–V, in “Séminaire sur les Singularités des Surfaces”, ed. by M. Demazure, H. Pinkham and B. Teissier. Lecture Notes in Mathematics, 777. Springer, Berlin, 1980, pp. 21–69.Google Scholar
  26. 26.
    I. Dolgachev, Weyl groups and Cremona transformations. in “Singularities, Part 1 (Arcata, Calif., 1981)”, 283–294, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.Google Scholar
  27. 27.
    I. Dolgachev, Topics in classical algebraic geometry, Part I, manuscript in preparations, see
  28. 28.
    P. Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1936), 18– 51.CrossRefMATHGoogle Scholar
  29. 29.
    F. Enriques, Sulle irrazionalita da cui puo farsi dipendere la resoluzione d'un' equazione algebrica \(f(x,y,z) = 0\) con funzioni razionali di due parametri, Math. Ann. 49 (1897), 1–23.CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    C. Geiser, Über zwei geometrische Probleme, J. Reine Angew. Math. 67 (1867), 78–89.CrossRefMATHGoogle Scholar
  31. 31.
    D. Gorenstein, Finite groups, Chelsea Publ. Co., New York, 1980.MATHGoogle Scholar
  32. 32.
    É. Goursat, Sur les substitutions orthogonales et les divisions rÃČâĂęÃĆ¡guliÃČâĂŽÃĆÂŔres de l'espace, Ann. de e'Ècole Norm. Sup. (3) 6 (1889), 9–102.MathSciNetGoogle Scholar
  33. 33.
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
  34. 34.
    T. Hosoh, Automorphism groups of cubic surfaces, J. Algebra 192 (1997), 651–677.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    H. Hudson, Cremona transformations in plane and space, Cambridge Univ. Press. 1927.Google Scholar
  36. 36.
    V. A. Iskovskih, Rational surfaces with a pencil of rational curves (Russian) Mat. Sb. (N.S.) 74 (1967), 608–638.MathSciNetGoogle Scholar
  37. 37.
    V. A. Iskovskikh, Rational surfaces with a pencil of rational curves with positive square of the canonical class, Math. USSR Sbornik, 12 (1970), 93–117.Google Scholar
  38. 38.
    V. A. Iskovskih, Minimal models of rational surfaces over arbitrary fields (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 19–43,MathSciNetGoogle Scholar
  39. 39.
    V. A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory (Russian) Uspekhi Mat. Nauk 51 (1996), 3–72; translation in Russian Math. Surveys 51 (1996), 585–652.MathSciNetGoogle Scholar
  40. 40.
    V. A. Iskovskikh, Two nonconjugate embeddings of the group \(S_3\times Z_2\) into the Cremona group (Russian) Tr. Mat. Inst. Steklova 241 (2003), Teor. Chisel, Algebra i Algebr. Geom., 105–109; translation in Proc. Steklov Inst. Math. 241 (2003), 93–97.MathSciNetGoogle Scholar
  41. 41.
    V. A. Iskovskikh, Two non-conjugate embeddings of \(S_3\times {\mathbb{Z}}_2\) into the Cremona group II, Adv. Study in Pure Math. 50 (2008), 251–267.MathSciNetGoogle Scholar
  42. 42.
    S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Berlin. Mayer & MÃČâĂęÃĆÂÿller. 111 S. gr. \(8^\circ\). 1895.Google Scholar
  43. 43.
    J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.Google Scholar
  44. 44.
    N. Lemire, V. Popov, Z. Reichstein, Cayley groups, J. Amer. Math. Soc. 19 (2006), 921–967.CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Yu. I. Manin, Rational surfaces over perfect fields. II (Russian) Mat. Sb. (N.S.) 72 (1967), 161–192.MathSciNetGoogle Scholar
  46. 46.
    Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic Translated from Russian by M. Hazewinkel. North-Holland Mathematical Library, Vol. 4. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974.Google Scholar
  47. 47.
    M. Noether, Über die ein-zweideutigen Ebenentransformationen, Sitzungberichte der physic-medizin, Soc. zu Erlangen, 1878.Google Scholar
  48. 48.
    B. Segre, The non-singular cubic surface, Oxford Univ. Press. Oxford. 1942.Google Scholar
  49. 49.
    T. Springer, Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin-New York, 1977.Google Scholar
  50. 50.
    A. Wiman, Zur Theorie endlichen Gruppen von birationalen Transformationen in der Ebene, Math. Ann. 48 (1896), 195–240.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    H. Zassenhaus, The theory of groups, Chelsea Publ. New York, 1949.MATHGoogle Scholar
  52. 52.
    D.-Q. Zhang, Automorphisms of finite order on rational surfaces. With an appendix by I. Dolgachev, J. Algebra 238 (2001), 560–589.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Busines Meida, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations