A Game Theoretical Perspective on the Somatic Evolution of cancer

  • David BasantaEmail author
  • Andreas Deutsch
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Angiogenic Factor Invasive Phenotype Evolutionarily Stable Strategy Evolutionary Game Theory Glycolytic Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Nowell. The clonal evolution of tumor cell populations.Science, 4260, 194:23–28, 1976.CrossRefGoogle Scholar
  2. 2.
    B. Crespi and K. Summers. Evolutionary biology of cancer.Tr. Ecol. Evol., 20(10):545–52, Oct. 2005.Google Scholar
  3. 3.
    L. Merlo, J. Pepper, B. Reid, and C. Maley. Cancer as an evolutionary and ecological process.Nat. Rev. Cancer, 6:924–935, Dec. 2006.CrossRefGoogle Scholar
  4. 4.
    K. Sigmund and M. Nowak. Evolutionary game theory.Curr. Biol., 9:503–5, 1999.CrossRefGoogle Scholar
  5. 5.
    R. Gatenby and P. Maini. Cancer summed up.Nature, 421:321, Jan. 2003.CrossRefGoogle Scholar
  6. 6.
    D. Hanahan and R. Weinberg. The hallmarks of cancer.Cell, 100:57–70, Jan. 2000.CrossRefGoogle Scholar
  7. 7.
    W.C. Hahn and R. Weinberg. Rules for making human tumor cells.N. Eng. J. Med., 347(20):1593–1603, Nov. 2002.CrossRefGoogle Scholar
  8. 8.
    J. von Neumann and O. Morgernstern.Theory of games and economic behaviour. Princeton University Press, Princeton, NJ, 1953.Google Scholar
  9. 9.
    M. Nowak.Evolutionary dynamics. Belknap, Cambridge, MA, 2006.zbMATHGoogle Scholar
  10. 10.
    M. Merston-Gibbons.An introduction to game-theoretic modelling. AMS, 2nd edition, Providence, RI, 2000.Google Scholar
  11. 11.
    J. Maynard Smith.Evolution and the theory of games. Cambridge University Press, Cambridge, 1982.zbMATHGoogle Scholar
  12. 12.
    R.A. Fisher.The genetical theory of natural selection. Clarendon, Oxford, 1930.zbMATHGoogle Scholar
  13. 13.
    J. Maynard Smith and D. Harper.Animal signals. Oxford University Press, Oxford, 2003.Google Scholar
  14. 14.
    I.P.M. Tomlinson and W.F. Bodmer. Modelling the consequences of interactions between tumour cells.Brit. J. Cancer, 75(2):157–60, 1997.Google Scholar
  15. 15.
    I.P.M. Tomlinson. Game theory models of interactions between tumour cells. Eur. J. Cancer, Vol 33, N9, pp. 1495–1500, 1997.CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Gatenby and T. Vincent. An evolutionary model of carcinogenesis.Cancer Res., 63:6212–6220, Oct. 2003.Google Scholar
  17. 17.
    O. Warburg.The metabolism of tumors (English translation by F. Dickens). Constable, London, 1930.Google Scholar
  18. 18.
    R.A. Gatenby and E.T. Gawlinski. The glycolytic phenotype in carcinogenesis and tumor invasion. Cancer Res. 63, 3847–3854, July 15, 2003.Google Scholar
  19. 19.
    R. Gatenby and R. J. Gillies. Why do cancers have high aerobic glycolysis?Nat. Rev. Cancer, 4:891–899, 2004.CrossRefGoogle Scholar
  20. 20.
    R. Gatenby, E. Gawlinski, A. Gmitro, B. Kaylor, and R. Gillies. Acid-mediated tumor invasion: a multidisciplinary study.Cancer Res., 66(10):5216–23, May 2006.Google Scholar
  21. 21.
    J. Folkman. The role of angiogenesis in tumor growth.Semin. Cancer Biol., 3:65–71, 1992.Google Scholar
  22. 22.
    L.A. Bach, S.M. Bentzen, J. Alsner, and F.B. Christiansen. An evolutionary game model of tumour cell interactions: possible relevance to gene therapy.Eur. Jour. Cancer, 37:2116–2120, 2001.CrossRefGoogle Scholar
  23. 23.
    L.A. Bach, D.J.T. Sumpter, J. Alsner, and V. Loeschke. Spatial evolutionary games of interaction among generic cancer cells.Jour. Theo. Med., 5(1):47–58, 2003.zbMATHCrossRefGoogle Scholar
  24. 24.
    M. Nowak and R. May. Evolutionary games and spatial chaos.Nature, 18(359):826–29, 1992.CrossRefGoogle Scholar
  25. 25.
    Y. Mansury and T. Deisboeck. The impact of ‘search-precision’ in an agent based tumor model.Jour. Theo. Biol., 224:325–337, 2003.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Y. Mansury, M. Diggory, and T.S. Deisboeck. Evolutionary game theory in an agent based brain tumor model: exploring the genoype phenotype link.Jour. Theo. Biol., 238:146–156, 2006.CrossRefMathSciNetGoogle Scholar
  27. 27.
    D. Basanta, M. Simon, H. Hatzikirou, and A. Deutsch. An evolutionary game theory perspective elucidates the role of glycolysis in tumour invasion. Submitted to Cell Proliferation, 2008.Google Scholar
  28. 28.
    F. Hoppensteadt.Mathematical methods of population biology. Cambridge University Press, Cambridge, MA, 1982.zbMATHGoogle Scholar
  29. 29.
    T. Vincent. Carcinogenesis as an evolutionary game.Adv. in Compl. Sys., 9(4):369–382, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    T. Vincent and R. Gatenby. Somatic evolution of cancer.Int. Game Th. Rev., 9(4), 2007.Google Scholar
  31. 31.
    R. Axelrod and W. Hamilton. The evolution of cooperation.Science, 211:1390–1396, 1981.CrossRefMathSciNetGoogle Scholar
  32. 32.
    R. Axelrod, D. Axelrod, and K. Pienta. Evolution of cooperation among tumor cells.PNAS, 103(36):13474–79, Sept. 2006.CrossRefGoogle Scholar
  33. 33.
    C. Park, M. Bissell, and M. Barcellos-Hoff. The influence of the microenvironment on the malignant phenotype.Mol. Med. Today, 6:324–329, Aug. 2000.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.Technische Universität Dresden, Zentrum für Informationsdienste und HochleistungsrechnenGermany

Personalised recommendations