A Temperley–Lieb Analogue for the BMW Algebra

  • G. I. LehrerEmail author
  • R. B. Zhang
Part of the Progress in Mathematics book series (PM, volume 284)


The Temperley–Lieb algebra may be thought of as a quotient of the Hecke algebra of type A, acting on tensor space as the commutant of the usual action of quantum \({\mathfrak{s}\mathfrak{l}}_{2}\) on \({(\mathbb{C}{(q)}^{2})}^{\otimes n}\). We define and study a quotient of the Birman–Wenzl–Murakami algebra, which plays an analogous role for the three-dimensional representation of quantum \({\mathfrak{s}\mathfrak{l}}_{2}\). In the course of the discussion, we prove some general results about the radical of a cellular algebra, which may be of independent interest.


Quantum group Cellular algebra Tensor Temperley–Lieb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BW.
    J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249–273Google Scholar
  2. Br.
    R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. (2) 38 (1937), 857–872Google Scholar
  3. DHW.
    W. F. Doran IV, D. B. Wales and P.J. Hanlon, On the semisimplicity of the Brauer centralizer algebras, J. Algebra 211 (1999), 647–685Google Scholar
  4. D.
    V. G. Drinfel’d, Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, CA, 1986), 798–820, Amer. Math. Soc., RI, 1987Google Scholar
  5. GL96.
    J. Graham and G. I. Lehrer, Cellular algebras, Inventiones Math. 123 (1996), 1–34Google Scholar
  6. GL03.
    J. J. Graham and G. I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. 36 (2003), 479–524Google Scholar
  7. GL04.
    J. J. Graham and G. I. Lehrer, Cellular algebras and diagram algebras in representation theory, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math. 40, Math. Soc. Japan, Tokyo, (2004), 141–173Google Scholar
  8. LZ.
    G. I. Lehrer and R. B. Zhang, Strongly multiplicity free modules for Lie algebras and quantum groups, J. Alg. 306 (2006), 138–174Google Scholar
  9. L1.
    G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70 (1988), no. 2, 237–249Google Scholar
  10. L2.
    G. Lusztig, Introduction to quantum groups. Progress in Mathematics, 110. Birkhäuser, Boston, 1993Google Scholar
  11. RS.
    H. Rui and M. Si, A criterion on the semisimple Brauer algebras. II. J. Combin. Theor. Ser. A 113 (2006), 1199–1203Google Scholar
  12. X.
    C. Xi, On the quasi-heredity of Birman–Wenzl algebras. Adv. Math. 154(2), (2000), 280–298Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations