Advertisement

Automorphisms of Pure Sphere Braid Groups and Galois Representations

  • Yasutaka Ihara
Chapter
Part of the Modern Birkhäuser Classics book series

Abstract

Let Pn be the pure braid group of the 2-sphere, with n strings (n ≥ 3), and \( \hat P_n \) be its pro- completion (: a fixed prime number). We shall study what we call the special automorphism groups of Pn and \( \hat P_n \), and apply it to Galois representations of the type proposed in Grothendieck [7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Anderson and Y. Ihara, Pro-ℓ branched coverings ofP 1and higher circular ℓ-units, Ann. of Math. 128 (1988), 271–293.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M.P. Anderson, Exactness properties of profinite functors, Topology 13 (1974), 229–239.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Birman, Braids, links, and mapping class groups, Ann. of Math. Studies 82 (1975), Princeton Univ. Press.Google Scholar
  4. [4]
    P. Deligne, Letters to A. Grothendieck (Nov. 19, 1982, and an earlier one undated(?)), to S.Bloch (Feb. 2, March 14, 1984).Google Scholar
  5. [5]
    J. Dyer and E. Grossman, The automorphism groups of the braid groups, Amer. J. Math. 103 (1981), 1151–1169.MathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Fadell and J. Van Buskirk, The braid groups of E 2and S 2, Duke Math. J. 29 (1962), 243–257.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Grothendieck, Esquisse d’un programme, (Preprint, 1984).Google Scholar
  8. [8]
    Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. 123 (1986), 43–106.MathSciNetCrossRefGoogle Scholar
  9. [9]
    N.V. Ivanov, Algebraic properties of mapping class groups of surfaces, “Geometric and Algebraic Topology” 18 (1986), 15–35, Banach Center Publ.MathSciNetGoogle Scholar
  10. [10]
    N. Jacobson, Lie algebras, Interscience (1962).Google Scholar
  11. [11]
    T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57–75.MathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Kohno and T. Oda, The lower central series of the pure braid group of an algebraic curve, Adv. Studies in Pure Math. 12 (1987), 201–220.MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. McCarthy, Automorphisms of surface mapping class groups. A recent theorem of N.Ivanov, Invent. Math. 84 (1986), 49–71.MathSciNetCrossRefGoogle Scholar
  14. [14]
    W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience (1966).Google Scholar
  15. [15]
    J. Nielsen, Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385–397.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Yasutaka Ihara
    • 1
  1. 1.Department of Mathematics Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations