Advertisement

Complex Immersions and Arakelov Geometry

  • Jean-Michel Bismut
  • Henri Gillet
  • Christophe Soulé
Part of the Progress in Mathematics book series (MBC)

Abstract

In this paper we establish an arithmetic Riemann-Roch-Grothendieck Theorem for immersions. Our final formula involves the Bott-Chern currents attached to certain holomorphic complexes of Hermitian vector bundles, which were previously introduced by the authors. The functorial properties of such currents are studied. Explicit formulas are given for Koszul complexes.

Keywords

Exact Sequence Vector Bundle Normal Bundle Holomorphic Vector Bundle Smooth Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BaFM]
    Baum, P., Fulton, W., MacPherson, R., Riemann-Roch for singular varieties, Publ. Math. IHES 45, 101–146 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bl]
    Bismut, J.M., Localisation du caractère de Chern en géométrie complexe et superconnexions, C.R.A.S t. 307, série I, 523–526 (1988).MathSciNetzbMATHGoogle Scholar
  3. [B2]
    Bismut, J.M., Superconnection currents and complex immersions. Invent Math. 99, 59–113 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B3]
    Bismut, J.M., Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, to appear in Math. Annalen. Google Scholar
  5. [BGS1]
    Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, I. Comm. Math. Phys. 115, 49–78 (1988).CrossRefzbMATHGoogle Scholar
  6. [BGS2]
    Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, II. Comm. Math. Phys. 115, 79–126 (1988).CrossRefzbMATHGoogle Scholar
  7. [BGS3]
    Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, III. Comm. Math. Phys. 115, 301–351 (1988).CrossRefzbMATHGoogle Scholar
  8. [BGS4]
    Bismut, J.M., Gillet, H., Soulé, C., Bott-Chern currents and complex immersions. Duke Math Journal 60, 255–284 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BGS5]
    Bismut, J.M., Gillet, H., Soulé, C., Classes caractéristiques secondaires et immersions en géométrie complexe, C.R.A.S t. 307, Série I, 565–567 (1988).zbMATHGoogle Scholar
  10. [BoC]
    Bott, R., Chern, S.S., Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114, 71–112 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [E]
    Eilenberg, S., Homological dimension and local syzygies, Annals of Math. 64, 328–336 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [GS1]
    Gillet, H., Soulé, C., Arithmetic Intersection Theory, 1988, Preprint IHES.zbMATHGoogle Scholar
  13. [GS2]
    Gillet, H., Soulé, C., Characteristic classes for algebraic vector bundles with Hermitian metrics, I, Annals of Math. 131, 163–243 (1990); II, to appear.CrossRefzbMATHGoogle Scholar
  14. [GS3]
    Gillet, H., Soulé, C., Analytic torsion and the arithmetic Todd genus, to appear in Topology. Google Scholar
  15. [Ha]
    Hartshorne, R., Algebraic Geometry, Graduate Texts in Math., 52, Berlin-Heidelberg-New York, Springer (1977).CrossRefzbMATHGoogle Scholar
  16. [H]
    Hörmander, L., The analysis of linear partial differential operators, Vol. I., Grundl. der Math. Wiss., Band 256, Berlin-Heidelberg-New York: Springer (1983).zbMATHGoogle Scholar
  17. [Ma]
    Manin, Yu. L., New dimensions m geometry, in Lecture Notes in Math. 1111, 59–101, Berlin-Heidelberg-New York, Springer (1985).Google Scholar
  18. [MQ]
    Mathai, V., Quillen D., Superconnections, Thorn classes and equivariant differential forms, Topology 25, 85–110 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Ql]
    Quillen, D., Superconnections and the Chern character, Topology 24, 89–95 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Q2]
    Quillen, D., Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 14, 31–34 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Se]
    Serre, J.P., Algèbre locale. Multiplicités, Lecture Notes in Math. 11, Berlin-Heidelberg-New York, Springer (1965).zbMATHGoogle Scholar
  22. [SGA6]
    Grothendieck, A. and al., Théorie des intersections et Théorème de Riemann-Roch, Lecture Notes in Math. 225, Berlin-Heidelberg-New York, Springer (1971).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2007

Authors and Affiliations

  • Jean-Michel Bismut
    • 1
  • Henri Gillet
    • 2
  • Christophe Soulé
    • 3
  1. 1.Dept. de Math. Bât 425Univ. de Paris-SudOrsayFrance
  2. 2.Dept. of Math.Univ. of IllinoisChicagoUSA
  3. 3.CNRS and IHESBures-sur-YvetteFrance

Personalised recommendations