Advertisement

Protein Domains of GTPases on Membranes: Do They Rely on Turing’s Mechanism?

  • Lutz Brusch
  • Perla Del Conte-Zerial
  • Yannis Kalaidzidis
  • Jochen Rink
  • Bianca Habermann
  • Marino Zerial
  • Andreas Deutsch
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

We evaluate different mechanisms for spatial domain formation of guanosine triphosphatases (GTPases) on cellular membranes. A kinetic model of the basic guanine-nucleotide cycle common to all GTPases is developed and coupled along a one-dimensional axis by diffusion of inactive and activated GTPases. We ask whether a parameter set exists such that domain formation is possible by Turing’s mechanism, i.e., purely by reactions and diffusion, and show that the Turing instability does not occur in this model for any parameter combination. But, as revealed by stability and bifurcation analysis, domain formation is reproduced after augmenting the model with combinations of two spatial interaction mechanisms: 1. attraction and 2. adhesion among active GTPases. These interactions can be mediated by effector proteins that bind active GTPases, and the model therefore predicts domains to disintegrate if effector binding is inhibited.

Key words

GTPase membrane domain Turing pattern bifurcation analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balch, W., Der, C., Hall, A.: GTPases Regulating Membrane Dynamics. Academic Press, London (2005)Google Scholar
  2. 2.
    Zerial, M., McBride, H.: Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol., 2, 107–117 (2001).CrossRefGoogle Scholar
  3. 3.
    Miaczynska, M., Zerial, M.: Mosaic organization of the endocytic pathway. Exp. Cell Res., 272, 8–14 (2002).CrossRefGoogle Scholar
  4. 4.
    Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 237, 37–72 (1952).CrossRefGoogle Scholar
  5. 5.
    Gierer A., Meinhardt H.: A theory of biological pattern formation. Kybernetik, 12, 30–39 (1972).CrossRefGoogle Scholar
  6. 6.
    Meinhardt, H., Gierer, A.: Pattern formation by local self-activation and lateral inhibition. Bioessays, 22, 753–760 (2000).CrossRefGoogle Scholar
  7. 7.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (2002).Google Scholar
  8. 8.
    Castets, V.V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett., 64, 2953–2956 (1990).CrossRefGoogle Scholar
  9. 9.
    Dulos, E., Boissonade, J., Perraud, J.J., Rudovics, B., De Kepper, P.: Chemical morphogenesis: Turing patterns in an experimental chemical system. Acta Biotheor., 44, 249–261 (1996).CrossRefGoogle Scholar
  10. 10.
    Fisahn, J., Lucas, W.J.: Spatial organization of transport domains and subdomain formation in the plasma membrane of Chara corallina, J. Membr. Biol., 147, 275–281 (1995).Google Scholar
  11. 11.
    Hely, T.A., Van Ooyen, A., Willshaw, D.J.: A simulation of growth cone flopodia dynamics based on Turing morphogenesis patterns. In: Paton, R.C., Holcombe, M. (eds.) Information Processing in Cells and Tissues. Plenum, New York (1998).Google Scholar
  12. 12.
    Hunding, A.: Microtubule dynamics may embody a stationary bipolarity forming mechanism related to the prokaryotic division site mechanism. J. Biol. Phys., 30, 325–344 (2004).CrossRefGoogle Scholar
  13. 13.
    John, K., Bär, M.: Alternative mechanisms of structuring biomembranes: self-assembly versus self-organization. Phys. Rev. Lett., 95, 198101 (2005).CrossRefGoogle Scholar
  14. 14.
    John, K., Bär, M.: Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes. Phys. Biol., 2, 123–132 (2005).CrossRefGoogle Scholar
  15. 15.
    Gebhardt, C., Gruler, H., Sackmann, E.: On domain structure and local curvature in lipid bilayers and biological membranes. Z. Naturforsch., 32, 581–596 (1977).Google Scholar
  16. 16.
    Lipowsky, R., Sackmann, E. (eds.): The Structure and Dynamics of Membranes. Elsevier, Amsterdam (1995)Google Scholar
  17. 17.
    Kruse, K.: A dynamic model for determining the middle of Escherichia coli. Biophys. J., 82, 618–627 (2002).CrossRefGoogle Scholar
  18. 18.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys., 28, 258–267 (1958).CrossRefGoogle Scholar
  19. 19.
    Howard, M., Rutenberg, A.D., de Vet, S.: Dynamic compartmentalization of bacteria: accurate division in E. coli, Phys. Rev. Lett., 87, 278102 (2001).CrossRefGoogle Scholar
  20. 20.
    Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems. Int. J. Bif. Chaos., 1, 493–520 and 745–772 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Bussemaker, H.J.: Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond. Phys. Rev. E., 53, 1644–1661 (1996).CrossRefGoogle Scholar
  22. 22.
    Deutsch, A., Dormann, S.: Cellular Automation Modeling of Biological Pattern Formation. Birkhäuser, Boston (2006).Google Scholar

Copyright information

© springer 2007

Authors and Affiliations

  • Lutz Brusch
    • 1
  • Perla Del Conte-Zerial
    • 1
    • 2
  • Yannis Kalaidzidis
    • 2
    • 3
  • Jochen Rink
    • 2
  • Bianca Habermann
    • 2
  • Marino Zerial
    • 2
  • Andreas Deutsch
    • 1
  1. 1.Center for Information Services and High Performance ComputingTechnische Universität Dresden01062 DresdenGermany
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstr.10801307 DresdenGermany
  3. 3.A.N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscow 119899Russia

Personalised recommendations