Advertisement

Bacterial Swarming Driven by Rod Shape

  • Jörn Starruß
  • Fernando Peruani
  • Markus Bär
  • Andreas Deutsch
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

Swarming pattern formation of self-propelled entities is a prominent example of collective behavior in biology. Here we focus on bacterial swarming and show that the rod shape of self-propelled individuals is able to drive swarm formation without any kind of signaling.

The underlying mechanism we propose is purely mechanical and is evidenced through two different mathematical approaches: an on-lattice and an off-lattice individual-based model. The intensities of swarm formation we obtain in both approaches uncover that the length-width aspect ratio controls swarm formation. Moreover we show that there is an optimal aspect ratio that favors swarming.

Keywords

Swarming rod-shaped bacteria cellular Potts model cellular automaton individualbased modelsmotion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bussemarker, J.H., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett., 78, 5018–5021 (1997).CrossRefGoogle Scholar
  2. 2.
    Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A, 281, 17–29 (2000).CrossRefGoogle Scholar
  3. 3.
    Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation—Characterization, Applications, and Analysis. Birkhäuser, Boston (2005).zbMATHGoogle Scholar
  4. 4.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, London (1986).Google Scholar
  5. 5.
    Dworkin, M.: Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev., 60, 70–102 (1996).Google Scholar
  6. 6.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett., 69, 2013–2016 (1992).CrossRefGoogle Scholar
  7. 7.
    Igoshin, O.A., Welch, R., Kaiser, D., Oster, G.: Waves and aggregation patterns in myxobacteria. Proc. Natl. Acad. Sci. U.S.A., 101, 4256–4261 (2004).CrossRefGoogle Scholar
  8. 8.
    Jelsbak, L., Søgaard-Andersen, L.: Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol., 3, 637–642 (2000).CrossRefGoogle Scholar
  9. 9.
    Kaiser, D., Welch, R.: Dynamics of fruiting body morphogenesis. J. Bacteriol., 186, 919– 927 (2004).CrossRefGoogle Scholar
  10. 10.
    Koch, A., White, D.L.: The social lifestyle of myxobacteria. Bioessays, 20, 1030–1028 (1998).CrossRefGoogle Scholar
  11. 11.
    Levine, A., Liverpool, T., MacKintosh, F.: Dynamics of rigid and flexible extended bodies in viscous films and membranes. Phys. Rev. Lett., 93, 038102 (2004).CrossRefGoogle Scholar
  12. 12.
    Levine, A., Liverpool, T., MacKintosh, F.: Mobility of extended bodies in viscous films and membranes. Phys. Rev. E, 69, 021503 (2004).CrossRefGoogle Scholar
  13. 13.
    Mareé, S.: From pattern formation to morphogenesis: multicellular coordination in Dictyostelium discoideum. Ph.D. thesis, University Utrecht (2002).Google Scholar
  14. 14.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys., 21, 1087–1092 (1953).CrossRefGoogle Scholar
  15. 15.
    Peruani, F., Deutsch, A., Bär, M.: Nonequilibrium clustering of self-propelled rods. Phys. Rev.E, 74, 030904(R) (2006).CrossRefGoogle Scholar
  16. 16.
    Spormann, A.M., Kaiser, D.: Gliding movements in Myxococcus xanthus. J. Bacteriol., 177, 5846–5852 (1995).Google Scholar
  17. 17.
    Starruß, J.,Søgaard-Andersen, L., Bley, T., Deutsch, A.: A new mechanism for collective migration in Myxococcus xanthus. J. Stat. Phys., (2007).Google Scholar
  18. 18.
    Stevens, A.: A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J. Appl. Math., 61, 172–182 (2000).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© springer 2007

Authors and Affiliations

  • Jörn Starruß
    • 1
  • Fernando Peruani
    • 1
  • Markus Bär
    • 2
  • Andreas Deutsch
    • 1
  1. 1.Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
  2. 2.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations