Optimization models for semiconductor dopant profiling

  • Martin Burger
  • Michael Hinze
  • Rene Pinnau
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The design of semiconductor devices is an important and challenging task in modern microelectronics, which is increasingly being carried out via mathematical optimization with models for the device behavior. The design variable (and correspondingly the unknown in the associated optimization problems) is the device doping profile, which describes the (charge) density of ion impurities in the device and is therefore modeled as a spatially inhomogeneous function. The optimization goals are usually related to the device characteristics, in particular to outflow currents on some contacts. This is also the typical setup we shall confine ourselves to in this chapter, namely to (approximately) achieve a certain goal related to the outflow current on a contact (e.g., a maximization or just an increase of the current), ideally with minimal change of the doping profile to some given reference state.


Design Variable Lagrange Multiplier Optimization Model Limit Problem Semiconductor Dopant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BP03]
    M. Burger, R. Pinnau, Fast optimal design of semiconductor devices, SIAM J. Appl. Math. 64, 108–126 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  2. [GS92]
    H. Gajewski, J. Sommrey, On the uniqueness of solutions of van Roosbroeck equations, ZAMM 72, 151–153 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  3. [HP02a] M. Hinze, R. Pinnau, Optimal control of the drift-diffusion model for semiconductor devices, in: K.H. Hoffmann, G. Lengering, J. Sprekels, and F. Trottzch (eds.): Optimal Control of Complex Structures, Birkhäuser, Basel (2002), 95–106.Google Scholar
  4. [HP02b] M. Hinze, R. Pinnau, An optimal control approach to semiconductor design, Math. Mod. Meth. Appl. Sci. 12, 89–107 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [HP05]
    M. Hinze, R. Pinnau, Mathematical tools in optimal semiconductor design, to appear in TTSP (2005).Google Scholar
  6. [HP06]
    M. Hinze, R. Pinnau, A second order approach to optimal semiconductor design, to appear in JOTA (2006).Google Scholar
  7. [JP01]
    A. Jüngel, Y.J. Peng, A model hierarchy for semiconductors and plasmas, Nonlin. Anal. 47 (2001), 1821–1832.zbMATHCrossRefGoogle Scholar
  8. [Kel95]
    C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.zbMATHGoogle Scholar
  9. [MRS90]
    P.A. Markowich, C.A. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, Wien, New York, 1990.zbMATHGoogle Scholar
  10. [PSSS98]
    R. Plasun, M. Stockinger, R. Strasser, and S. Selberherr, Simulation based optimization environment and its application to semiconductor devices, in: Proceedings IASTED Intl. Conf. on Applied Modelling and Simulation, 1998, pp. 313–316.Google Scholar
  11. [St00]
    M. Stockinger, Optimization of ultra-low-power CMOS transistors, PhD Thesis, Technical University Vienna, 2000.Google Scholar
  12. [Stea98]
    M. Stockinger, R. Strasser, R. Plasun, A. Wild, and S. Selberherr, A Qualitative Study on Optimized MOSFET Doping Profiles, in: Proceedings SISPAD 98 Conf., Leuven, 1998, pp. 77–80.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Martin Burger
    • 1
  • Michael Hinze
    • 2
  • Rene Pinnau
    • 3
  1. 1.Institut für IndustriemathematikJohannes Kepler UniversitätLinzAustria
  2. 2.Institut für Numerische MathematikTechnische Universität DresdenDresdenGermany
  3. 3.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations