Advertisement

Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients

  • Daniel Tataru
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 69)

Abstract

In these notes we discuss recent results concerning the long time evolution for variable coefficient time dependent Schrödinger evolutions in ℝn. Precisely, we use phase space methods to construct global in time outgoing parametrices and to prove Strichartz type estimates. This is done in the context of C 2 metrics which satisfy a weak asymptotic flatness condition at infinity.

Key words

Schrödinger equations outgoing parametrices Strichartz estimates phase space transforms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126(2004), 569–605.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Jean-Marc Delort, F.B.I. transformation. Second microlocalization and semilinear caustics, Springer-Verlag, Berlin, 1992.zbMATHGoogle Scholar
  3. 3.
    Shin-ichi Doi, Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318(2000), 355–389.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9(1983), 129–206.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gerald B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, NJ, 1989.zbMATHGoogle Scholar
  6. 6.
    J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 144(1992), 163–188.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Andrew Hassell, Terence Tao and Jared Wunsch, A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds, Comm. Partial Differential Equations 30(2005), 157–205.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(1998), 955–980.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58(2005), 217–284.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Robbiano and C. Zuily, Strichartz estimates for the Schrödinger equation with variable coefficients, Preprint.Google Scholar
  11. 11.
    Johannes Sjöstrand, Singularités analytiques microlocales, in Astérisque 95, 1–166, Soc. Math. France, Paris, 1982.Google Scholar
  12. 12.
    Hart F. Smith, A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier (Grenoble)48 (1998), 797–835.zbMATHMathSciNetGoogle Scholar
  13. 13.
    Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27(2002), 1337–1372.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Daniel Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122(2000), 349–376.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Daniel Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123(2001), 385–423.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Daniel Tataru, On the Fefferman-Phong inequality and related problems, Comm. Partial Differential Equations 27(2002), 2101–2138.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Daniel Tataru, Phase space transforms and microlocal analysis, Phase space analysis of partial differential equations. Vol. II, 505–524, Pubbl. Cent. Ric. Mat. Ennio De Giorgi, Scuola Norm. Sup., Pisa, 2004.Google Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • Daniel Tataru
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations