Advertisement

Floating-Gate MOS Synapse Transistors

  • Chris Diorio
  • Paul Hasler
  • Bradley A. Minch
  • Carver Mead
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 447)

Abstract

Our goal is to develop silicon learning systems. One impediment to achieving this goal has been the lack of a simple circuit element combining nonvolatile analog memory storage with locally computed memory updates. Existing circuits [63, 132] typically are large and complex; the nonvolatile floating-gate devices, such as EEPROM transistors, typically are optimized for binary-valued storage [17], and do not compute their own memory updates. Although floating-gate transistors can provide nonvolatile analog storage [1, 15], because writing the memory entails the difficult process of moving electrons through SiO2, these devices have not seen wide use as memory elements in silicon learning systems.

Keywords

Gate Oxide Drain Voltage Gate Current Floating Gate Tunneling Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Allen, A. Greenblatt, C. Mead, and J. Anderson. Writeable analog reference voltage storage device. U.S. Patent No. 5,166,562, 1991.Google Scholar
  2. [2]
    A. G. Andreou and K. A. Boahen. Analog VLSI signal and information processing. In M. Ismail and T. Fiez, editors, Neural information processing II, pages 358–413. McGraw-Hill, New York, 1994.Google Scholar
  3. [3]
    S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka. Reliability issues of flash memory cells. In Proc. of the IEEE, volume 82-5, pages 776–787, 1993.CrossRefGoogle Scholar
  4. [4]
    P. Churchland and T. Sejnowski. The Computational Brain. MIT Press, 1993.Google Scholar
  5. [5]
    C. Diorio, P. Hasler, B. A. Minch, and C. Mead. A high-resolution non-volatile analog memory cell. In Proc. IEEE Intl. Symp. on Circuits and Systems, volume 3, pages 2233–2236, 1995.Google Scholar
  6. [6]
    C. Diorio, P. Hasler, B. A. Minch, and C. Mead. A single transistor silicon MOS device for long term learning. U.S. Patent Office serial no. 08/399966, Mar. 7 1995.Google Scholar
  7. [7]
    C. Diorio, P. Hasler, B. A. Minch, and C. Mead. A single-transistor silicon synapse. IEEE Trans. Electron Devices, 43(11):1972–1980, 1996.CrossRefGoogle Scholar
  8. [8]
    C. C. Enz, F. Krummenacher, and E. A. Vittoz. An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 8:83–114, 1995.CrossRefGoogle Scholar
  9. [9]
    A. S. Grove. Physics and Technology of Semiconductor Devices. John Wiley & Sons, New York, 1967.Google Scholar
  10. [10]
    P. Hasler, C. Diorio, B. A. Minch, and C. Mead. Single transistor learning synapses. In Advances in Neural Information Processing Systems 7, pages 817–824. MIT Press, Cambridge, MA, 1995.Google Scholar
  11. [11]
    P. Hasler, C. Diorio, B. A. Minch, and C. Mead. Single transistor learning synapses with long term storage. In IEEE Intl. Symp. on Circuits and Systems, volume 3, pages 1660–1663, 1995.Google Scholar
  12. [12]
    P. Hasler, B. A. Minch, C. Diorio, and C. Mead. An autozeroing amplifier using pfet hot-electron injection. In Proc. IEEE Intl. Symp. on Circuits and Systems, volume 3, pages 325–328, Atlanta, May 1996.Google Scholar
  13. [13]
    B. Hochet, V. Peiris, S. Abdo, and M. J. Declercq. Implementation of a learning kohonen neuron based on a new multilevel storage technique. IEEE J. Solid-State Circuits, 26(3):262–267, 1991.CrossRefGoogle Scholar
  14. [14]
    P. Hollis and J. Paulos. A neural network learning algorithm tailored for VLSI implementation. IEEE Tran. Neural Networks, 5(5):784–791, 1994.CrossRefGoogle Scholar
  15. [15]
    J. Lazzaro, J. Wawrzynek, and A. Kramer. Systems technologies for silicon auditory models. IEEE Micro, 14(3):7–15, June 1994.CrossRefGoogle Scholar
  16. [16]
    M. Lenzlinger and E. H. Snow. Fowler-nordheim tunneling into thermally grown sio 2. J. of Appl. Phys., 40(6):278–283, 1996.Google Scholar
  17. [17]
    F. Masuoka, R. Shirota, and K. Sakui. Reviews and prospects of non-volatile semiconductor memories. IEICE Trans., E 74(4):868–874, 1991.Google Scholar
  18. [18]
    C. Mead. Scaling of MOS technology to submicrometer feature sizes. J. of VLSI Signal Processing, 8:9–25, 1994.CrossRefGoogle Scholar
  19. [19]
    C. A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.zbMATHGoogle Scholar
  20. [20]
    J. J. Sanchez and T. A. DeMassa. Review of carrier injection in the silicon/silicon-dioxide system. In IEE Proceedings-G, volume 138-3, pages 377–389, 1991.Google Scholar
  21. [21]
    W. Shockley. Problems related to pn junctions in silicon. Solid-State Electronics, 2(1):35–67, 1961.CrossRefGoogle Scholar
  22. [22]
    S. M. Sze. Physics of Semiconductor Devices. John Wiley & Sons, New York, 1981.Google Scholar
  23. [23]
    E. Takeda, C. Yang, and A. Miura-Hamada. Hot-Carrier Effects in MOS Devices. Academic Press, San Diego, CA, 1995.Google Scholar
  24. [24]
    S. Tam, P. Ko, and C. Hu. Lucky-electron model of channel hot-electron injection in MOSFET’s. IEEE Trans. Electron Devices, ED-31(9):1116–1125, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Chris Diorio
    • 1
  • Paul Hasler
    • 1
  • Bradley A. Minch
    • 1
  • Carver Mead
    • 1
  1. 1.Physics of Computation LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations