Semantics of Abstract Argument Systems

Chapter

An abstract argument system or argumentation framework, as introduced in a seminal paper by Dung [13], is simply a pair

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baroni, P., Giacomin, M.: Characterizing defeat graphs where argumentation semantics agree. In: G. Simari, P. Torroni (eds.) Proc. 1st Int. Workshop on Argumentation and Non-Monotonic Reasoning (ARGNMR07), pp. 33–48. Tempe, AZ (2007)Google Scholar
  2. 2.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artif. Intell. (Special issue on Argumentation in A.I.) 171(10/15), 675–700 (2007)MathSciNetGoogle Scholar
  3. 3.
    Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: P. Besnard, S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Computational Models of Argument (COMMA 2008), pp. 25–36. IOS Press, Toulouse, F (2008)Google Scholar
  4. 4.
    Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. accepted for publication on Int. J. Approx. Reason. (2008)Google Scholar
  5. 5.
    Baroni, P., Giacomin, M.: A systematic classification of argumentation frameworks where semantics agree. In: P. Besnard, S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Computational Models of Argument (COMMA 2008), pp. 37–48. IOS Press, Toulouse, F (2008)Google Scholar
  6. 6.
    Baroni, P., Giacomin, M., Guida, G.: Towards a formalization of skepticism in extension-based argumentation semantics. In: Proc. 4th Workshop on Computational Models of Natural Argument (CMNA 2004), pp. 47–52. Valencia, Spain (2004)Google Scholar
  7. 7.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168(1-2), 165–210 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Caminada, M.: Semi-stable semantics. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int. Conf. on Computational Models of Argument (COMMA 2006), pp. 121–130. IOS Press, Liverpool, UK (2006)Google Scholar
  9. 9.
    Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In: Proc. 20th National Conf. on Artificial Intelligence (AAAI-05), pp. 608–613. AAAI Press, Menlo Park, CA (2005)Google Scholar
  10. 10.
    Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frameworks. In: Proc. 17th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2005), pp. 568–572. IEEE Computer Society, Hong Kong, China (2005)CrossRefGoogle Scholar
  11. 11.
    Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Proc. 8th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005), pp. 317–328. Barcelona, E (2005)Google Scholar
  12. 12.
    Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: K. Furukawa (ed.) Proc. 8th Int. Conf. on Logic Programming (ICLP 91), pp. 3–17. MIT Press, Paris, F (1991)Google Scholar
  13. 13.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int. Conf. on Computational Models of Argument (COMMA 2006), pp. 145–156. IOS Press, Liverpool, UK (2006)Google Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: R.A. Kowalski, K. Bowen (eds.) Proc. 5th Int. Conf. on Logic Programming (ICLP 88), pp. 1070–1080. MIT Press, Cambridge, Massachusetts (1988)Google Scholar
  16. 16.
    Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: D.M. Gabbay, F. Guenthner (eds.) Handbook of Philosophical Logic, Second Edition. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  19. 19.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MATHGoogle Scholar
  21. 21.
    Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Proc. 8th Dutch Conf. on Artificial Intelligence (NAIC’96), pp. 357–368. Utrecht, NL (1996)Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Dip. di Elettronica per l’AutomazioneUniversity of BresciaVia Branze 38Italy

Personalised recommendations