Microelectronics of Recording, Stimulation, and Wireless Telemetry for Neuroprosthetics: Design and Optimization

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

This chapter focuses on how to interface biological systems with electronics so as to implement bio-instruments to obtain the in-depth understandings about the animal behavior and human brain activities, and complex neuroprosthetic devices to treat various neurological diseases. The interdisciplinary nature of the system requires a wide range of knowledge on both biology and electronics to build such systems. A unique environment where the system should operate imposes challenging design constraints and system issues, which can be solved only by considering both biology and electronics simultaneously. Fundamental building circuits including amplifiers, filters, analog-to-digital converters (ADCs) are addressed first and subsystems which consist of those basic circuits are explained with emphasis on trade-offs which should be considered carefully to achieve optimal design. Several state-of-art systems such as integrated wireless neural-recording systems and retinal prostheses are presented to explain how the fundamental knowledge and principles are used in the real applications.

References

  1. 1.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.Google Scholar
  2. 2.
    Liu W, Humayun MS (2004) Retinal prosthesis Solid-State Circuits Conference. Digest of Technical Papers. IEEE Int ISSCC, Vol. 1, pp. 218–219, 15–19 Feb. 2004.Google Scholar
  3. 3.
    Ortmanns M, Rocke A, Gehrke M, Tiedtke HJ (2007) A 232-Channel epiretinal stimulator ASIC. IEEE J Solid-State Circ 42(12): 2946–2959, Dec. 2007.CrossRefGoogle Scholar
  4. 4.
    Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3-D neuroprosthetic devices. Science 296: 1829–1832, June 2002.CrossRefGoogle Scholar
  5. 5.
    Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27: 487–501, July 2004.CrossRefGoogle Scholar
  6. 6.
    Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE (2006) The Neurochip BCI: Towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng 14(2): 187–190, June 2006.CrossRefGoogle Scholar
  7. 7.
    Anschel DJ, Ortega EL, Kraus AC, Fisher RS (2004) Focally injected adenosine prevents seizures in the rat. Exp Neurol 190: 544–457.Google Scholar
  8. 8.
    Bhatti PT, Lee S, Wise KD (2006) A 32-site 4-channel cochlear electrode array. IEEE J Solid-State Circ 41:2965–2973, Dec. 2006.Google Scholar
  9. 9.
    Limousin P, Krack P, Pollack P, Benazzouz A, Ardouin C, Hoffmann D, Benabid A (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Eng J Med 339: 1105–1111.CrossRefGoogle Scholar
  10. 10.
    Chae M, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circ 43: 1931–1939CrossRefGoogle Scholar
  11. 11.
    Ferris CD (1978) Introduction to Bioinstrumentation. Humana, Clifton NJ.Google Scholar
  12. 12.
    Olsson RH, Gulari MN, Wise KD (2002) Silicon neural recording arrays with on-chip electronics for in-vivo data acquisition. IEEE EMBS Int Conf 237–240Google Scholar
  13. 13.
    Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38: 958–965CrossRefGoogle Scholar
  14. 14.
    Chae M, Kim J, Liu W (2008) Fully-differential self-biased bio-potential amplifier. Electron Lett 44: 1390–1391.CrossRefGoogle Scholar
  15. 15.
    Dagtekin M, Liu W, Bashirullah R (2001) A multichannel chopper modulated neural recording system. Proc IEEE EMBS Int Conf 757–760.Google Scholar
  16. 16.
    Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid-State Circ 42: 2934–2945CrossRefGoogle Scholar
  17. 17.
    Harrison R (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96:1203–1216.CrossRefGoogle Scholar
  18. 18.
    Razavi B (2001) Design of Analog CMOS Integrated Circuits. McGraw-Hill, Boston, MA.Google Scholar
  19. 19.
    Vogels M, Gielen G (2003) Architectural selection of A/D converters. In Proc. Design Automation Conference, June 2–6, 2003, pp. 974–977Google Scholar
  20. 20.
    Scott M. D, Boser B. E, Pister S. J(2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circ. 38(7): 1123–1129, July 2003.CrossRefGoogle Scholar
  21. 21.
    Kugelstadt T (2000) The operation of the SAR-ADC based on charge redistribution. Tex Inst Analog Appl J 10–12, Feb. 2000.Google Scholar
  22. 22.
    Pang C, Cham JG, Nenadic Z, Musallam S, Tai YC, Burdick JW, Andersen RA (2005) A new multi-site probe array with monolithically integrated parylene flexible cable for neural prostheses. In Proc. 27th Annu. Int. Conf. Engineering in Medicine and Biology Soc., Shanghai, China, Sep. 1–4, 2005, pp. 7114–7117.Google Scholar
  23. 23.
    Demichele GA, Troyk PR (2003) Integrated multichannel wireless biotelemetry system. In Proc. 25th IEEE EMBS Int. Conf., Cancun, Mexico, Sep. 17–21, pp. 3372–3375.Google Scholar
  24. 24.
    Obeid IL, Nicolelis MA, Wolf PD (2004) A multichannel telemetry system for single unit neural recordings. J Neurosci Methods 133: 123–135, Feb. 2004.Google Scholar
  25. 25.
    Mohseni P, Najafi K (2005) A battery-powered 8-channel wireless FM IC for biopotential recording applications. In Dig. Tech. Papers 2005 IEEE Int Solid-State Circ Conf, San Francisco, CA, Feb. 6–10, 2005, pp. 560–561.Google Scholar
  26. 26.
    Harrison R, Watkins P, Kier R, Lovejoy R, Black D, Normann R, Solzbacher F (2006) A low-power integrated circuit for a wireless 100-electrode neural recording system. In Dig. Tech. Papers 2006 IEEE Int Solid-State Circuits Conf, San Francisco, CA, Feb. 6–9, 2006, pp. 2258–2267.Google Scholar
  27. 27.
    O’Driscoll S, Meng T, Shenoy K, Kemere C (2006) Neurons to silicon: Implantable prosthesis processor. In Dig. Tech. Papers 2006 IEEE Int Solid-State Circ Conf, San Francisco, CA, Feb. 6–9, 2006, pp. 2248–2257.Google Scholar
  28. 28.
    Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circ 38(6): 958–965, June 2003.CrossRefGoogle Scholar
  29. 29.
    Ferris CD (1978) Introduction to Bioinstrumentation. Humana, Clifton, NJ.Google Scholar
  30. 30.
    Liu W, Sivaprakasam M, Wang G, Chae MS (2006) A neural recording system for monitoring shark behavior. In Proc. IEEE Int. Symp. Circuits and Systems, May 21–24, 2006, pp. 4123–4236.Google Scholar
  31. 31.
    Razavi B (2001) Design of Analog CMOS Integrated Circuits, 2nd edn. McGraw-Hill, Boston, MA, Chapter 18, pp. 653–655.Google Scholar
  32. 32.
    Vogels M, Gielen G (2003) Architectural selection of A/D converters. In Proc. Design Automation Conference, June 2–6, pp. 974–977.Google Scholar
  33. 33.
    Scott MD, Boser BE, Pister SJ (2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circ 38(7): 1123–1129, July 2003.CrossRefGoogle Scholar
  34. 34.
    Robinson DA (1968) The electrical properties of metal microelectrodes. Proceedings of the IEEE, 56(6): 1065–1071, June 1968.CrossRefGoogle Scholar
  35. 35.
    Fee MS, Mitra PP, Kleinfeld D (1996) Variability of extracellular spike waveforms of cortical neurons. J Neurophysiol 76:3823–3833.Google Scholar
  36. 36.
    Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network Comput Neural Syst 9:53–78.CrossRefGoogle Scholar
  37. 37.
    Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings in vivo. J Neurosci Methods. 154(1–2):204–224, June 2006.CrossRefGoogle Scholar
  38. 38.
    Wood F, Black MJ, Vargas-Irwin C, Fellows M, Donoghue JP (2004) On the variability of manual spike sorting. IEEE Trans Biomed Eng 51(6): 912–918, June 2004.CrossRefGoogle Scholar
  39. 39.
    Chapin JK (2004) Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 7: 452–455, Apr. 2004.CrossRefGoogle Scholar
  40. 40.
    Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature. 416: 141–142.CrossRefGoogle Scholar
  41. 41.
    Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442: 164–171.CrossRefGoogle Scholar
  42. 42.
    Quirk MC, Blum KI, Wilson MA (2001) Experience-dependent changes in extracellular spike amplitude may reflect regulation of dendritic action potential back-propagation in rat hippocampal pyramidal cells. J f Neurosci 21(1): 240–248, Jan. 2001.Google Scholar
  43. 43.
    Kaneko H, Tamura H, Suzuki SS (2007) Tracking spike-amplitude changes to improve the quality of multineuronal data analysis. IEEE Trans Biomed Eng 54(2): 262–272, Feb. 2007.CrossRefGoogle Scholar
  44. 44.
    Bar-Hillel A, Spiro A, Stark E (2006) Spike sorting: Bayesian clustering of non-stationary data. J Neurosci 157(2): 303–316, Oct. 2006.Google Scholar
  45. 45.
    Zumsteg ZS, Kemere C, O’Driscoll S, Santhanam G, Ahmed RE, Shenoy KV, et al. (2005) Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans Neural Syst Rehabil Eng 13(3):272–279, Sep. 2005.CrossRefGoogle Scholar
  46. 46.
    Thakur PH, Lu H, Hsiao SS, Johnson KO (2007) Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J Neurosci Methods 162(1):364–376, May 2007.CrossRefGoogle Scholar
  47. 47.
    Lewicki MS (1994) Bayesian modeling and classification of neural signals. Advances NIPS 590–597.Google Scholar
  48. 48.
    Vargas-IrwinC, Donoghue JP (2007) Automated spike sorting using density grid contour clustering and subtractive waveform decomposition. J Neurosci Methods; 164(1):1–18.Google Scholar
  49. 49.
    Lewicki MS (1994) Bayesian modeling and classification of neural signals. Neural Comput 6:1005–1030.MATHCrossRefGoogle Scholar
  50. 50.
    Vollgraf R, Obermayer K (2006) Improved optimal linear filters for the discrimination of multichannel waveform templates for spike-sorting applications. IEEE Signal Proc Lett. 13(3):121–124, Mar 2006.CrossRefGoogle Scholar
  51. 51.
    Zhang P, Wu J, Zhou Y, Liang P, Yuan J (2004) Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neurosci Methods. 7(5):446–451, May 2004.Google Scholar
  52. 52.
    Letelier JC, Weber PP (2000) Spike sorting based on discrete wavelet transform coe_cients. J Neurosci Methods 101:93–106.Google Scholar
  53. 53.
    Quian Quiroga R, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8):1661–1687, Aug. 2004.MATHCrossRefGoogle Scholar
  54. 54.
    Pavlov A, Makarov VA, Makarova I, Panetsos F (2007) Sorting of neural spikes: When wavelet based methods outperform principal component analysis. Natural Computing. 6(3):269–281, Sep. 2007.MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Takahashi S, Sakurai Y (2007) Coding of spatial information by soma and dendrite of pyramidal cells in the hippocampal CA1 of behaving rats. Eur J Neurosci Methods 26(7):2033–2045, Oct. 2007.CrossRefGoogle Scholar
  56. 56.
    Sakurai Y, Tamura H, Takahashi S (2006) Dynamic synchrony of firing in the monkey prefrontal cortex during working-memory tasks. J Neurosci. 26(40):10141–10153, Oct. 2006.CrossRefGoogle Scholar
  57. 57.
    Snellings A, Anderson D, Aldridge J (2006) Improved signal and reduced noise in neural recordings from closespaced electrode arrays using independent component analysis as a preprocessor. J Neurosci Methods 150(2):254–264, Jan. 2006.CrossRefGoogle Scholar
  58. 58.
    Takahashi S, Sakurai Y (2005) Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo. Neuroscience 134:301–315, Mar. 2005.CrossRefGoogle Scholar
  59. 59.
    Mamlouk AM, Sharp H, Menne KML, Hofmann UG, Martinetz T (2005) Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing 65:65–66.Google Scholar
  60. 60.
    Delescluse M, Pouzat C (2006) E_cient spike-sorting of multi-state neurons using inter-spike intervals information. J Neurosci Methods 150(1):16–29, Jan. 2006.CrossRefGoogle Scholar
  61. 61.
    Yang Z, Zhao Q, Liu W (2009) Spike Feature Extraction Using Informative Samples. Spot light presentation Advances in Neural Information Processing Systems NIPS, 2009, MIT Press, Cambridge, MA.Google Scholar
  62. 62.
    Yang Z, Zhao Q, Liu W. Neural Signal Classification Using a Simplified Feature Set with Energy Based Non-parametric Clustering. To appear in Neurocomputing.Google Scholar
  63. 63.
    Jung HK, Choi JH, Kim T (2006) Solving alignment problems in neural spike sorting using frequency domain PCA. Neurocomputing 69(7–9):975–978, Mar. 2006.CrossRefGoogle Scholar
  64. 64.
    Blanche TJ, Swindale NV (2006) Nyquist interpolation improves neuron yield in multiunit recordings. J Neurosci Methods 155(1):207–216, July 2006.CrossRefGoogle Scholar
  65. 65.
    Sahani M (1999) Latent variable modelss for neural data analysis. PhD dissertation, California Institute of Technology.Google Scholar
  66. 66.
    Shenoy KV, Santhanam G, Ryu SI, Afshar A, Yu BM, Gilja V, et al. (2006) Increasing the performance of cortically-controlled prostheses. Proc 28th Ann Int Conf IEEE EMBS, p. 6652–6656.Google Scholar
  67. 67.
    Yang Z, Chen T, Liu W (2008) Neuron signature based spike feature extraction algorithm for on- chip implementation. Lecture Proc. 30th Ann. Int. Conf. IEEE EMBS, pp. 1716–1719, August 2008.Google Scholar
  68. 68.
    Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comp Neurosci 6(2):169–184, Mar. 1999.MATHCrossRefGoogle Scholar
  69. 69.
    Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci USA 93(18):9921–9925, Sep. 1996.CrossRefGoogle Scholar
  70. 70.
    Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge.Google Scholar
  71. 71.
    Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66(2):635–650.Google Scholar
  72. 72.
    Greenberg RJ, Velte TJ, Humanyun MS, Scarlatis GN, De Juan EJ (1996) A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng 46(5):505–514, May 1999.CrossRefGoogle Scholar
  73. 73.
    Rattay R (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36:676–692.CrossRefGoogle Scholar
  74. 74.
    Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451, May 2004.CrossRefGoogle Scholar
  75. 75.
    Thurbon D, Field A, Redman S (1994) Electrotonic profiles of interneurons in stratum pVramidale of the CA1 region of rat hippocampus. J Neurophysiol 71(5):1948–1958.Google Scholar
  76. 76.
    Rattay R, Richardson NL, Felix H (2001) A model of the electrically excited cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153:43–63.CrossRefGoogle Scholar
  77. 77.
    Hausser M, Spruston N, Stuart G (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744, Oct 2000.CrossRefGoogle Scholar
  78. 78.
    Gilja V, Linderman MD, Santhanam G, Afshar A, Ryu SI, Meng TH, et al. (2006) Multiday electrophysiological recordings from freely behaving primates. Proc 28th Ann Int Conf IEEE EMBS, 2006, pp. 4387–4391.Google Scholar
  79. 79.
    Kim KH, Kim JK (2000) Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans Biomed Eng 47(10):1406–1411, Oct 2000.CrossRefGoogle Scholar
  80. 80.
    Kaiser JF (1990) On a simple algorithm to calculate the energy of a signal. In Proc IEEE Int Conf Acoustic Speech and Signal Processing pp. 381–384.Google Scholar
  81. 81.
    MaragosP, Kaiser JF, Quatieri TF. On amplitude and frequency demodulation using energy operators. IEEE Trans Signal Proc 41, No:4, April 1893.Google Scholar
  82. 82.
    Mukhopadhyay S, Ray GC (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45, 180–187, Feb. 1998.CrossRefGoogle Scholar
  83. 83.
    Gibson S, Judy JW, Markovic D (2008) Comparison of Spike-sorting algorithms for future hardware implementation. To Appear in Proc 30th Ann Int Conf IEEE EMBS. 2008 Aug.Google Scholar
  84. 84.
    Simon W (1965) The real-time sorting of neuro-electric action potentials in multiple unit studies. Electroenceph Clin Neurophysiol. 18:192–195.CrossRefGoogle Scholar
  85. 85.
    Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with application in pattern recognition. IEEE Trans Inf Theory 21:180–187.CrossRefGoogle Scholar
  86. 86.
    Cheng YZ (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799, Aug.CrossRefGoogle Scholar
  87. 87.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619, May 2002.CrossRefGoogle Scholar
  88. 88.
    Comaniciu D, Ramesh V, Meer P (2001) The variable bandwidth mean shift and data-driven scale selection. In: IEEE International Conference on Computer Vision, I: 438–445.Google Scholar
  89. 89.
    Hall P, Hui TC, Marron JC (1995) Improved variable window kernel estimates of probability densities. Ann Stat.23:1–10.MATHCrossRefGoogle Scholar
  90. 90.
    Stuart MacKey R (xxxx) Bio-Medical Telemetry: Sensing and Transmitting Biological Information from Animals and Man. John Wiley & Sons, Inc., New York, August 1998.Google Scholar
  91. 91.
    Deutsch S (1976) A 15-electrode totally implanted time-multiplex telemetry unit. IEEE Trans. Commun 24, 1073–1078, Oct. 1976.CrossRefGoogle Scholar
  92. 92.
    Summers G (1970) Transducers for bioimplantable telemetry systems. IEEE IECI-17, 17: 144–150, Apr. 1970.Google Scholar
  93. 93.
    Meindl J (1977) Integrated electron devices in medicine. Int Electron Dev Meet 23: 1–1.Google Scholar
  94. 94.
    Ryan TG, Busacker JW, Hochban RA (1994) Pacemaker telemetry system, U.S Patent 5 350 411.Google Scholar
  95. 95.
    Troyk P, DeMichele G (2000) Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. Proc. IEEE 25th EMBS Conference, vol.4, pp. 3376–3379, Sept. 2003.Google Scholar
  96. 96.
    Loftin SM, McClure KH (2006) Low-power, high-modulation-index amplifier for use in battery-powered device, U.S Patent 7 092 762.Google Scholar
  97. 97.
    Zierhofer CM (2003) Multichannel cochlear implant with neural response telemetry, U.S. Patent 6 600 955.Google Scholar
  98. 98.
    Zierhofer C, Hochmair-Desoyer I, Hochmair E (1995) Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Neural Syst Rehabil 3:112–116, Mar. 1995.CrossRefGoogle Scholar
  99. 99.
    Dong M, Zhang C, Wang Z, Li D (2004) A neuro-stimulus chip with telemetry unit for cochlear implant. IEEE Int Workshop Biomed Circ Syst, pp. S1/3/INV 9–12, Dec. 2004.Google Scholar
  100. 100.
    W. Liu, Vichienchom K, Clements M, DeMarco SC, Hughes C, McGucken E, Hymayun MS, de Juan E, Weiland JD, Greenberg R (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circ. 35(10):1487–1497, Oct. 2000.CrossRefGoogle Scholar
  101. 101.
    Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circ Syst. 51:2374–2383, Dec. 2004Google Scholar
  102. 102.
    Theogaraja L Wyatt J, Rizzo J, Drohan B, Markova M, Kelly S, Swider G, Raj M, Shire D, Gingerich M, Lowenstein J, Yomtov B (2006) Minimally invasive retinal prosthesis. IEEE ISSCC Digest of Technical Papers, pp. 54–55, Feb. 2006.Google Scholar
  103. 103.
    Zhou M, Liu W (2007) A non-coherent PSK receiver with interference-canceling for transcutaneous neural implants. ISSCC Digest of Technical Paper, pp. 156–157, Feb. 2007.Google Scholar
  104. 104.
    Humayun MS, Juan E De, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39(15): 2569–2576, July, 1999.CrossRefGoogle Scholar
  105. 105.
    Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, Juan E De (1999) Long term histological and electrophysiological results of an inactive epi-retinal electrode array implantation in dogs. Invest. Ophthalmol Vis Sci 40(9): 2073–2081, Aug. 1999.Google Scholar
  106. 106.
    Ko WH, Liang SP, Fung CDF (1977) Design of radio-frequency powered coils for implant instruments. Med Biol Eng Comput 15(6):634–640, Nov. 1977.CrossRefGoogle Scholar
  107. 107.
    Wang G, Liu W, Sivaprakasam M, Humayun MS, Weiland JD (2005) Power supply topologies for biphasic stimulation in inductively powered implants. IEEE ISCAS 3: 2743–2746.Google Scholar
  108. 108.
    Yang Z, Wang G, Liu W (2006) Analytical calculation of the selfresonant frequency of biomedical telemetry coils. Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 5880–5883, Sep. 2006.Google Scholar
  109. 109.
    Grover F (1962) Inductance Calculations: Working Formulas and Tables. Dover, New York.MATHGoogle Scholar
  110. 110.
    Yang Z, Liu W, Basham E (2007) Inductor modeling in wireless links for implantable electronics. IEEE Trans Magn 43: 3851–3860, Oct. 2007.CrossRefGoogle Scholar
  111. 111.
    Ferreira J (1992) Analytical computation of ac resistance of round and rectangular litz wire windings. Proc Inst Elect Eng Part B 139(1): 21–25, Jan. 1992.Google Scholar
  112. 112.
    Troyk P, DeMichele G (2003) Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. Proc IEEE 25th EMBS Conference, vol. 4, pp. 3376–3379, Sept. 2003.Google Scholar
  113. 113.
    Zierhofer C, Hochmair-Desoyer I, Hochmair E (1995) Electronic design of a cochlear implant for multichannel high-rate pulastile stimulation strategies. IEEE Trans. Neural Syst Rehabil 3:112–116, Mar. 1995.CrossRefGoogle Scholar
  114. 114.
    Liu W, et al. (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J Solid-State Circ. 35(10): 1487–1497, Oct. 2000.CrossRefGoogle Scholar
  115. 115.
    Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circ Syst 51:2374–2383, Dec. 2004.CrossRefGoogle Scholar
  116. 116.
    Weiland JD, et al. (2005) Progress towards a high-resolution retinal prosthesis. Proc. IEEE 27th EMBC Conference, pp. 7373–7375, Sep. 2005.Google Scholar
  117. 117.
    Zhou M, et al. (2006) A transcutaneous data telemetry system tolerant to power telemetry interference. Proc. IEEE 28th EMBS Conference, pp. 5884–5887, Sep. 2006.Google Scholar
  118. 118.
    Liu W, Humayun MS (2004) Retinal prosthesis. ISSCC Digest of Technical Paper, pp. 218–219, Feb. 2004.Google Scholar
  119. 119.
    Wang G (2006) Wireless power and data telemetry for retinal prosthesis. Ph.D. dissertation, University of California, Santa Cruz, EE Dept., CA, USA, Mar. 2006.Google Scholar
  120. 120.
    Zhou M, Liu W (2007) A non-coherent PSK receiver with interference-canceling for transcutaneous neural implants. ISSCC Digest of Technical Papers, pp. 156–157, Feb. 2007.Google Scholar
  121. 121.
    Vaughan RG, Scott NL, White DR (1991) The theory of bandpass sampling. IEEE Trans. Signal Process 39: 1973–1984, Sep. 1991.CrossRefGoogle Scholar
  122. 122.
    Razavi B (1995) Principles of Data Conversion System design. IEEE Press, New York.Google Scholar
  123. 123.
    Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and Design of Analog Integrated Circuit. Wiley, New York.Google Scholar
  124. 124.
    Federal communications commission, http://www.fcc.gov
  125. 125.
    Deparis N, Loyez C, Rolland N, Rolland P-A (2006) Pulse generator for UWB communication and radar applications with PPM and time hopping possibilities. ISCAS 2006, pp. 661–665, 2006.Google Scholar
  126. 126.
    Saha P, Sasaki N, Kikkawa T (2006) A Single-Chip Gaussian Monocycle Pulse Transmitter Using 0.18 /spl m/m CMOS Technology for Intra/Interchip UWB Communication. IEEE VLSI Symposium on Circuits, June 15–17, 2006, pp. 204–205.Google Scholar
  127. 127.
    Jung B, Tseng YH, Harvey J, Harjani R (2005) Pulse generator design for UWB IR communication systems. IEEE Int Symp Circ Syst (ISCAS ‘05.), 5:4381–4384, 23–26 May 2005.CrossRefGoogle Scholar
  128. 128.
    Bennett WR, Davey JR (1965) Data Transmission. McGraw-Hill, New York.Google Scholar
  129. 129.
    Wentzloff DD, Chandrakasan AP (2006) Gaussian Pulse Generators for Subbanded Ultra-Wideband Trasnmitters. IEEE Trans. Microw Theor Tech 54: 1647–1655, Apr. 2006.CrossRefGoogle Scholar
  130. 130.
    Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng T, Shenoy K (2007) HermesB: A continuous neural recording system for freely behaving primates. IEEE Tran Biomed Eng 54(11): 2037–2050, Nov. 2007.CrossRefGoogle Scholar
  131. 131.
    Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27: 487–501, July 2004.CrossRefGoogle Scholar
  132. 132.
    Borisoff JF, McPhail LT, Saunders JTW, Birch GE, Ramer MS (2006) Detection and classification of sensory information from acute spinal cord recordings. IEEE Trans. Biomed Eng 53(8): 1715–1719, Aug. 2006.Google Scholar
  133. 133.
    Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE (2006) The Neurochip BCI: Towards a neural prosthesis for upper limb function. IEEE Trans. Neural Syst Rehabil Eng 14(2):187–190, June 2006.Google Scholar
  134. 134.
    Strange KD, Hoffer JA (1999) Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking. IEEE Trans. Rehabil Eng 7(3), Sep. 1999.Google Scholar
  135. 135.
    Wenzel BJ, Boggs JW, Gustafson KJ, Grill WM (2005) Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Trans. Neural Syst Rehabil Eng 13(3), Sep. 2005.Google Scholar
  136. 136.
    Hansen J, Borau A, Rodriguez A, Vidal J, Sinkjaer T, Rijkhoff NJM (2007) Urethral sphincter EMG as event detector for neurogenic detrusor overactivity. IEEE Trans. Biomed Eng 54(7), July 2007.Google Scholar
  137. 137.
    DiMarco AF (2001) Neural prostheses in the respiratory system. J. Rehabil Res Dev 38(6), Nov./Dec. 2001.Google Scholar
  138. 138.
    Mangold S, Keller T, Curt A, Dietz V (2005) Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord 43:1–13, 2005.Google Scholar
  139. 139.
    Aziz JNY, Genov R, Bardakjian BL, Derchansky M, Carlen PL (2007) Brain-silicon interface for high-resolution in vitro neural recording. IEEE Trans. Biomed Circ Syst 1(1): 56–62, Mar. 2007.CrossRefGoogle Scholar
  140. 140.
    Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with Spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans. Biomed Eng 54(1): 130–137, Jan. 2007.CrossRefGoogle Scholar
  141. 141.
    Cheney D, Goh A, Xu J, Gugel K, Harris JG, Sanchez JC, Principe JC (2007) Wireless, in vivo neural recording using a custom integrated bioamplifier and the pico system. CNE '07. 3rd International IEEE/EMBS Conference on Neural Eng, 2007, pp. 19–22, 2–5 May 2007.Google Scholar
  142. 142.
    Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circ, 42(1): 123–133, Jan. 2007.CrossRefGoogle Scholar
  143. 143.
    Sodagar AM, Wise KD, Najafi K (2007) A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed Eng 54(6): 1075–1088, June 2007.CrossRefGoogle Scholar
  144. 144.
    Olsson RH III, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid-State Circ 40: 2796–2804.CrossRefGoogle Scholar
  145. 145.
    Gosselin B, Ayoub AE, Sawan M (2007) A mixed-signal multi-chip neural recording interface with bandwidth reduction. In The 2007 IEEE Biomedical Circuits and Systems Conference (BIOCAS), pp. 49–52.Google Scholar
  146. 146.
    Chae M, Liu W, Yang Z, Chen T, Kim J, Sivaprakasam M, Yuce M (2008) A 128-channel 6mW wireless neural recording IC with on-the-fly spike sorting and UWB transmitter. In Dig. Tech. Papers 2008 IEEE Int. Solid-State Circ Conf., San Francisco, CA, Feb. 3–7, 2008, pp. 146–147.Google Scholar
  147. 147.
    Chae MS, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circuits 43(9): 1931–1939, Sept. 2008.CrossRefGoogle Scholar
  148. 148.
    Chimeno MF, Pallas-Areny R (2000) A comprehensive model for power line interference in biopotential measurements. IEEE Trans Inst Meas 49(3): 535–540, June 2000.CrossRefGoogle Scholar
  149. 149.
    Chae M, Kim J, Liu W (2008) Fully-differential self-biased bio-potential amplifier. Electron Lett 44(24): 1390–1391, November 20 2008.CrossRefGoogle Scholar
  150. 150.
    Scott MD, Boser BE, Pister SJ (2003) An ultralow-energy ADC for Smart Dust. IEEE Journal of Solid-State Circuits, 38(7): 1123–1129, July 2003.CrossRefGoogle Scholar
  151. 151.
    Linderman MD, Gilja V, Santhanam G, Afshar A, Ryu SI, Meng TH, Shenoy KV (2006) Neural recording stability of chronic electrode. Proc. 28th Ann. Int. Conf. IEEE EMBS, pp. 4387–4391, 2006.Google Scholar
  152. 152.
    Hazan L, Zugaro M, Buzsaki G (2006) Klusters, neuroscope, ndmanager: A free software suite for neurophysiological data processing and visualization. J Neurosci Methods, 155(2):207–216, Sep 2006.CrossRefGoogle Scholar
  153. 153.
    Maragos P, Kaiser JF, Quatieri T. On amplitude and frequency demodulation using energy Operators. IEEE Trans Signal Process, April 1993.Google Scholar
  154. 154.
    Kim KH, Kim JK (2000) Neural spike sorting under nearly 0-db signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier. IEEE Trans Biomed Eng, 47(10):1406–1411, Oct. 2000.CrossRefGoogle Scholar
  155. 155.
    Yang Z, Chen T, Liu W (2008) Neuron signature based spike feature extraction algorithm for on-chip implementation. Proc. 30th Ann. Int. Conf. IEEE EMBS, pp. 1716–1719, August 2008.Google Scholar
  156. 156.
    Yang Z, Zhao Q, Liu W (2008) Spike feature extraction using informative samples. Advances in Neural Information Processing Systems (NIPS), MIT Press, Cambridge, MA. December 2008.Google Scholar
  157. 157.
    Chen T, Yang Z, Liu W, Chen L (2008) NEUSORT2.0: A multiple-channel neural signal processor with systolic array buffer and channel-interleaving processing schedule. Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 5029–5032, 20–25 Aug. 2008.Google Scholar
  158. 158.
    Gharpurey R, Kinget P (2008) Ultra Wideband : Circuits, Transceivers and Systems. Springer, New York.Google Scholar
  159. 159.
    Yuce MR, Liu W, Chae MS, Kim JS (2007) A wideband telemetry unit for multi-channel neural recording systems. Ultra-Wideband, 2007. IEEE International Conference on ICUWB 2007, pp. 612–617, 24–26 Sept. 2007.Google Scholar
  160. 160.
    Charles C (2008) An implantable I-UWB transceiver architecture with power carrier synchronization. Circuits and Systems, 2008. IEEE International Symposium on ISCAS, 2008, pp. 1970–1973.Google Scholar
  161. 161.
    Jung B, Tseng YH, Harvey J, Harjani R (2005) Pulse generator design for UWB IR communication systems. Circuits and Systems, 2005. IEEE International Symposium on ISCAS 2005, pp. 4381–4384 Vol. 5, 23–26 May 2005.Google Scholar
  162. 162.
    Webster JG (ed.) (1998) Medical Instrumentation Application and Design. John Wiley & Sons, Inc., New York.Google Scholar
  163. 163.
    Huhta JC, Webster JG (1973) 60-Hz Interference in electrocardiography. IEEE Trans Biomed Eng, Vol. BME-20, pp. 91–101.CrossRefGoogle Scholar
  164. 164.
    Thakor NV, Webster JG (1980) Ground-free ECG recording with two electrodes. IEEE Transactions on Biomedical Engineering, Vol. BME-27, No.12, pp. 699–704, Dec. 1980.CrossRefGoogle Scholar
  165. 165.
    Webster JG (1984) Reducing motion artifacts and interference in biopotential recording. IEEE Transactions on Biomedical Engineering, Vol. BME-31, No.12, pp. 823–826, Dec. 1984.CrossRefGoogle Scholar
  166. 166.
    Piipponen KVT, Sepponen R, Eskelinen P (2007) A biosignal instrumentation system using capacitive coupling for power and signal isolation. IEEE Transactions on Biomedical Engineering, Vol. 54, No. 10, pp. 1822–1828, Oct. 2007.CrossRefGoogle Scholar
  167. 167.
    To appear in Ph.D. dissertation of Chae M, Univ. of California, Santa Cruz, EE Department., CA, USA.Google Scholar
  168. 168.
    Weiland JD, Humayun MS (2008) Visual Prosthesis. Proceedings of the IEEE, Vol. 96, No.7, pp. 1076–1084, July 2008.CrossRefGoogle Scholar
  169. 169.
    Liu W, Humayun MS (2004) Retinal prosthesis. Solid-State Circuits Conference, 2004. Digest of Technical Papers. IEEE International ISSCC. 2004, Vol. 1, pp. 218–219, 15–19 Feb. 2004.Google Scholar
  170. 170.
    Ortmanns M, Rocke A, Gehrke M, Tiedtke HJ (2007) A 232-channel epiretinal stimulator ASIC. IEEE Journal of Solid-State Circuits, Vol.42, No.12, pp. 2946–2959, Dec. 2007.CrossRefGoogle Scholar
  171. 171.
    Rothermel A, Wieczorek V, Liu L, Stett A, Gerhardt M, Harscher A, Kibbel S (2008) A 1600-pixel Subretinal Chip with DC-free Terminals and ±2 V Supply Optimized for Long Lifetime and High Stimulation Efficiency. Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 144–602, 3–7 Feb. 2008.Google Scholar
  172. 172.
    Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol, 143(5):820–827, May 2007. Epub 2007 Mar 23.CrossRefGoogle Scholar
  173. 173.
    Zhou M, Liu W (2007) A Non-Coherent PSK Receiver with Interference-Canceling for Transcutaneous Neural Implants. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 156–593, 11–15 Feb. 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations