Catalysis by Supported Size-Selected Clusters

Chapter

Abstract

The use of size-selected metal clusters as model catalysts opens up many exciting new possibilities for the study of size-dependent catalysis. By supporting these size-selected clusters on planar thin-film or single-crystal metal oxide substrates, a variety of analysis techniques can be employed to examine them in detail in an effort to understand how and why these clusters exhibit unique reactivity. In this review, we focus on examples involving CO oxidation by gold clusters, NO reduction and the cycloisomerization of acetylene with Pd clusters, and hydrazine decomposition over Ir clusters. We conclude with some thoughts about in situ reaction probes and the potential of atom-by-atom design of bimetallic clusters with regard to size and composition.

References

  1. 1.
    Bäumer M, Freund HJ (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127CrossRefGoogle Scholar
  2. 2.
    Goodman DW (1996) Correlations between surface science models and “real-world” catalysts. J Phys Chem 100:13090CrossRefGoogle Scholar
  3. 3.
    Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:235CrossRefGoogle Scholar
  4. 4.
    Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf Sci Rep 27:1CrossRefGoogle Scholar
  5. 5.
    Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rosch N (2000) Size-effects in the acetylene cyclotrimerization on supported size-selected Pdn clusters (1 < = n< = 30). Surf Sci 454:984CrossRefGoogle Scholar
  6. 6.
    Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) When gold is not noble: Nanoscale gold catalysts. J Phys Chem A 103:9573CrossRefGoogle Scholar
  7. 7.
    Heiz U, Schneider WD (2000) Nanoassembled model catalysts. J Phys D Appl Phys 33:R85CrossRefGoogle Scholar
  8. 8.
    Heiz U, Schneider WD (2001) Size-selected clusters on solid surfaces. Crit Rev Solid State 26:251CrossRefGoogle Scholar
  9. 9.
    Heiz U, Bullock EL (2004) Fundamental aspects of catalysis on supported metal clusters. J Mater Chem 14:564CrossRefGoogle Scholar
  10. 10.
    Arenz M, Gilb S, Heiz U (2007) In: Woodruff D (ed) The chemical physics of solid surfaces, vol. 12, Elsevier, Amsterdam, ch 1Google Scholar
  11. 11.
    Vajda S, Winans RE, Elam JW, Lee BD, Pellin MJ, Seifert S, Tikhonov GY, Tomczyk NA (2006) Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Top Catal 39:161CrossRefGoogle Scholar
  12. 12.
    Baker SH, Thornton SC, Keen AM, Preston TI, Norris C, Edmonds KW, Binns C (1997) The construction of a gas aggregation source for the preparation of mass-selected ultrasmall metal particles. Rev Sci Instrum 68:1853CrossRefGoogle Scholar
  13. 13.
    Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instrum 71:3178CrossRefGoogle Scholar
  14. 14.
    Heiz U, Vayloyan A, Schumacher E (1997) A new cluster source for the generation of binary metal clusters. Rev Sci Instrum 68:3718CrossRefGoogle Scholar
  15. 15.
    Kemper P, Kolmakov A, Tong X, Lilach Y, Benz L, Manard M, Metiu H, Buratto SK, Bowers MT (2006) Formation, deposition and examination of size selected metal clusters on semiconductor surfaces: An experimental setup. Inter J Mass Spec 254:202CrossRefGoogle Scholar
  16. 16.
    Goldby IM, vonIssendorff B, Kuipers L, Palmer RE (1997) Gas condensation source for production and deposition of size-selected metal clusters. Rev Sci Instrum 68:3327CrossRefGoogle Scholar
  17. 17.
    von Issendorff B, Palmer RE (1999) A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev Sci Instrum 70:4497CrossRefGoogle Scholar
  18. 18.
    Boyd KJ, Lapicki A, Aizawa M, Anderson SL (1998) A phase-space-compressing, mass-selecting beamline for hyperthermal, focused ion beam deposition. Rev Sci Instrum 69:4106CrossRefGoogle Scholar
  19. 19.
    Vandoni G, Felix C, Goyhenex C, Monot R, Buttet J, Harbich W (1995) The fate of mass-selected silver clusters deposited on Pd(100). Surf Sci 333:838CrossRefGoogle Scholar
  20. 20.
    Harbich W (1999) “Soft landing” of size-selected clusters in chemically inert substrates. Phil Mag B 79:1307CrossRefGoogle Scholar
  21. 21.
    Lau JT, Wurth W, Ehrke HU, Achleitner A (2003) Soft landing of size-selected clusters in rare gas matrices. Low Temp Phys 29:223CrossRefGoogle Scholar
  22. 22.
    Bromann K, Brune H, Felix C, Harbich W, Monot R, Buttet J, Kern K (1997) Hard and soft landing of mass selected Ag clusters on Pt(111). Surf Sci 377:1051–1055CrossRefGoogle Scholar
  23. 23.
    Messerli S, Schintke S, Morgenstern K, Sanchez A, Heiz U, Schneider WD (2000) Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope. Surf Sci 465:331CrossRefGoogle Scholar
  24. 24.
    Tong X, Benz L, Chrétien S, Kemper P, Kolmakov A, Metiu H, Bowers MT, Buratto SK (2005) Pinning mass-selected Agn clusters on the TiO2(110)-1 × 1 surface via deposition at high kinetic energy. J Chem Phys 123:204701CrossRefGoogle Scholar
  25. 25.
    Tong X, Benz L, Kemper P, Metiu H, Bowers MT, Buratto SK (2005) Intact size-selected Aun clusters on a TiO2(110)-(1 × 1) surface at room temperature. J Am Chem Soc 127:13516CrossRefGoogle Scholar
  26. 26.
    Benz L, Tong X, Kemper P, Lilach Y, Kolmakov A, Metiu H, Bowers MT, Buratto SK (2005) Landing of size-selected Agn + clusters on single crystal TiO2 (110)-(1 × 1) surfaces at room temperature. J Chem Phys 122:081102CrossRefGoogle Scholar
  27. 27.
    Tong X, Benz L, Kolmakov A, Chrétien S, Metiu H, Buratto SK (2005) The nucleation sites of Ag clusters grown by vapor deposition on a TiO2(110)-1 × 1 surface. Surf Sci 575:60CrossRefGoogle Scholar
  28. 28.
    Benz L, Tong X, Kemper P, Metiu H, Bowers MT, Buratto SK (2006) Pinning mononuclear Au on the surface of titania. J Phys Chem B 110:663CrossRefGoogle Scholar
  29. 29.
    Buratto SK, Bowers MT, Metiu H, Manard M, Tong X, Benz L, Kemper P, Chrétien S (2007) In: Woodruff D (ed) The chemical physics of solid surfaces, vol. 12, Elsevier, Amsterdam, ch 4Google Scholar
  30. 30.
    Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) Structures of small gold cluster cations (Aun + , n < 14): Ion mobility measurements versus density functional calculations. J Chem Phys 116:4094CrossRefGoogle Scholar
  31. 31.
    Fernandez EM, Soler JM, Garzon IL, Balbas LC (2004) Trends in the structure and bonding of noble metal clusters. Phys Rev B 70:165403CrossRefGoogle Scholar
  32. 32.
    Olson RM, Varganov S, Gordon MS, Metiu H, Chrétien S, Piecuch P, Kowalski K, Kucharski SA, Musial M (2005) Where does the planar-to-nonplanar turnover occur in small gold clusters? J Am Chem Soc 127:1049CrossRefGoogle Scholar
  33. 33.
    Lee S, Fan CY, Wu TP, Anderson SL (2005) Agglomeration, sputtering, and carbon monoxide adsorption behavior for Au/Al2O3 prepared by Aun + deposition on Al2O3/NiAl(110). J Phys Chem B 109:11340CrossRefGoogle Scholar
  34. 34.
    Lee S, Fan CY, Wu TP, Anderson SL (2005) Agglomeration, support effects, and CO adsorption on Au/TiO2(110) prepared by ion beam deposition. Surf Sci 578:5CrossRefGoogle Scholar
  35. 35.
    Wu TP, Kaden WE, Anderson SL (2008) Water on rutile TiO2(110) and Au/TiO2(110): Effects on an mobility and the isotope exchange reaction. J Phys Chem C 112:9006CrossRefGoogle Scholar
  36. 36.
    Heiz U, Sherwood R, Cox DM, Kaldor A, Yates JT (1995) CO Chemisorption on monodispersed platinum clusters on SiO2 – detection of CO chemisorption on single platinum atoms. J Phys Chem 99:8730CrossRefGoogle Scholar
  37. 37.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153CrossRefGoogle Scholar
  38. 38.
    Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6:102CrossRefGoogle Scholar
  39. 39.
    Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427CrossRefGoogle Scholar
  40. 40.
    Haruta A (2003) When gold is not noble: Catalysis by nanoparticles. Chem Rec 3:75CrossRefGoogle Scholar
  41. 41.
    Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  42. 42.
    Bond GC, Thompson DT (2000) Gold-catalysed oxidation of carbon monoxide. Gold Bull 33:41Google Scholar
  43. 43.
    Meyer R, Lemire C, Shaikhutdinov S, Freund HJ (2004) The surface chemistry of catalysis by gold. Gold Bull 37:72Google Scholar
  44. 44.
    Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566CrossRefGoogle Scholar
  45. 45.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115:301CrossRefGoogle Scholar
  46. 46.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Let 44:83CrossRefGoogle Scholar
  47. 47.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647CrossRefGoogle Scholar
  48. 48.
    Heiz U, Sanchez A, Abbet S, Schneider WD (1999) The reactivity of gold and platinum metals in their cluster phase. Eur Phys J D 9:35CrossRefGoogle Scholar
  49. 49.
    Socaciu LD, Hagen J, Bernhardt TM, Woste L, Heiz U, Hakkinen H, Landman U (2003) Catalytic CO oxidation by free Au2: Experiment and theory. J Am Chem Soc 125:10437CrossRefGoogle Scholar
  50. 50.
    Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403CrossRefGoogle Scholar
  51. 51.
    Hakkinen H, Abbet W, Sanchez A, Heiz U, Landman U (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew Chem Int Edit 42:1297CrossRefGoogle Scholar
  52. 52.
    Lee SS, Fan CY, Wu TP, Anderson SL (2004) CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J Am Chem Soc 126:5682CrossRefGoogle Scholar
  53. 53.
    Lee S, Fan CY, Wu TP, Anderson SL (2005) Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Aun/TiO2 catalysts. J Chem Phys 123:124710CrossRefGoogle Scholar
  54. 54.
    Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts. J Am Chem Soc 121:3214CrossRefGoogle Scholar
  55. 55.
    Abbet S, Heiz U, Hakkinen H, Landman U (2001) CO oxidation on a single Pd atom supported on magnesia. Phys Rev Lett 86:5950CrossRefGoogle Scholar
  56. 56.
    Rottgen MA, Abbet S, Judai K, Antonietti JM, Worz AS, Arenz M, Henry CR, Heiz U (2007) Cluster chemistry: Size-dependent reactivity induced by reverse spill-over. J Am Chem Soc 129:9635CrossRefGoogle Scholar
  57. 57.
    Engel T, Ertl G (1978) Molecular-beam investigation of catalytic-oxidation of CO on Pd (111). J Chem Phys 69:1267CrossRefGoogle Scholar
  58. 58.
    Henry CR, Chapon C, Duriez C (1991) Precursor state in the chemisorption of CO on supported palladium clusters. J Chem Phys 95:700CrossRefGoogle Scholar
  59. 59.
    Harding CJ, Kunz S, Habibpour V, Teslenko V, Arenz M, Heiz U (2008) Dual pulsed-beam controlled mole fraction studies of the catalytic oxidation of CO on supported Pd nanocatalysts. J Catal 255:234CrossRefGoogle Scholar
  60. 60.
    Judai K, Abbet S, Worz AS, Ferrari AM, Giordano L, Pacchioni G, Heiz U (2003) Acetylene polymerization on supported transition metal clusters. J Mol Catal A 199:103CrossRefGoogle Scholar
  61. 61.
    Rucker TG, Logan MA, Gentle TM, Muetterties EL, Somorjai GA (1986) Conversion of acetylene to benzene over palladium single-crystal surfaces. 1. The low-pressure stoichiometric and the high-pressure catalytic reactions. J Phys Chem 90:2703CrossRefGoogle Scholar
  62. 62.
    Ormerod RM, Lambert RM (1990) Heterogeneously catalyzed cyclotrimerization of ethyne to benzene over supported palladium catalysts. Chem Commun 20:1421Google Scholar
  63. 63.
    Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rosch N (2000) Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 < = n < = 30): one atom is enough!. J Am Chem Soc 122:3453CrossRefGoogle Scholar
  64. 64.
    Tysoe WT, Nyberg GL, Lambert RM (1986) Selective hydrogenation of acetylene over palladium in ultra high-vacuum. J Phys Chem 90:3188CrossRefGoogle Scholar
  65. 65.
    Ferrari AM, Giordano L, Rosch N, Heiz U, Abbet S, Sanchez A, Pacchioni G (2000) Role of surface defects in the activation of supported metals: A quantum-chemical study of acetylene cyclotrimerization on Pd1/MgO. J Phys Chem B 104:10612CrossRefGoogle Scholar
  66. 66.
    Abbet S, Sanchez A, Heiz U, Schneider WD (2001) Tuning the selectivity of acetylene polymerization atom by atom. J Catal 198:122CrossRefGoogle Scholar
  67. 67.
    Judai K, Worz AS, Abbet S, Antonietti JM, Heiz U, Del Vitto A, Giordano L, Pacchioni G (2005) Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Phys Chem Chem Phys 7:955CrossRefGoogle Scholar
  68. 68.
    Sterrer M, Risse T, Pozzoni UM, Giordano L, Heyde M, Rust HP, Pacchioni G, Freund HJ (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98:096107CrossRefGoogle Scholar
  69. 69.
    Pacchioni G, Giordano L, Baistrocchi M (2005) Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys Rev Lett 94:226105CrossRefGoogle Scholar
  70. 70.
    Zhang C, Yoon B, Landman U (2007) Predicted oxidation of CO catalyzed by au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J Am Chem Soc 129:2228CrossRefGoogle Scholar
  71. 71.
    Worz AS, Judai K, Abbet S, Antonietti JM, Heiz U, Del Vitto A, Giordano L, Pacchioni G (2004) Chemistry on single atoms: Key factors for the acetylene trimerization on MgO-supported Rh, Pd, and Ag atoms. Chem Phys Lett 399:266CrossRefGoogle Scholar
  72. 72.
    Worz AS, Judai K, Abbet S, Heiz U (2003) Cluster size-dependent mechanisms of the CO + NO reaction on small Pdn (n < = 30) clusters on oxide surfaces. J Am Chem Soc 125:7964CrossRefGoogle Scholar
  73. 73.
    Judai K, Abbet S, Worz AS, Heiz U, Henry CR (2004) Low-temperature cluster catalysis. J Am Chem Soc 126:2732CrossRefGoogle Scholar
  74. 74.
    Rainer DR, Vesecky SM, Koranne M, Oh WS, Goodman DW (1997) The CO + NO reaction over Pd: A combined study using single-crystal, planar-model-supported, and high-surface-area Pd/Al2O3 catalysts. J Catal 167:234CrossRefGoogle Scholar
  75. 75.
    Piccolo L, Henry CR (2000) Reactivity of metal nanoclusters: nitric oxide adsorption and CO plus NO reaction on Pd/MgO model catalysts. Appl Surf Sci 162:670CrossRefGoogle Scholar
  76. 76.
    Lee S, Fan CY, Wu TP, Anderson SL (2005) Hydrazine decomposition over Irn/Al2O3 model catalysts prepared by size-selected cluster deposition. J Phys Chem B 109:381CrossRefGoogle Scholar
  77. 77.
    Fan CY, Wu TP, Kaden WE, Anderson SL (2006) Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(110). Surf Sci 600:461CrossRefGoogle Scholar
  78. 78.
    Buffat P, Borel JP (1976) Size effect on melting temperature of gold particles. Phys Rev A 13:2287CrossRefGoogle Scholar
  79. 79.
    Koper O, Winecki S (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry, John Wiley and Sons Inc., New York, ch 8Google Scholar
  80. 80.
    Becker C, von Bergmann K, Rosenhahn A, Schneider J, Wandelt K (2001) Preferential cluster nucleation on long-range superstructures on Al2O3/Ni3Al(111). Surf Sci 486:L443CrossRefGoogle Scholar
  81. 81.
    Lee B, Seifert S, Riley SJ, Tikhonov G, Tomczyk NA, Vajda S, Winans RE (2005) Anomalous grazing incidence small-angle X-ray scattering studies of platinum nanoparticles formed by cluster deposition. J Chem Phys 123:074701CrossRefGoogle Scholar
  82. 82.
    Vajda S, Winans RE, Elam JW, Lee B, Pellin MJ, Riley SJ, Seifert S, Tikhonov GY, Tomczyk NA (2005) In situ GISAXS studies of the thermal stability and temperature induced growth of supported cluster-based platinum and gold nanoparticles. Am Chem Soc Div Fuel Chem 50:190Google Scholar
  83. 83.
    Xiong G, Elam JW, Feng H, Han CY, Wang HH, Iton LE, Curtiss LA, Pellin MJ, Kung M, Kung H, Stair PC (2005) Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J Phys Chem B 109:14059CrossRefGoogle Scholar
  84. 84.
    Vajda S, Ballentine GE, Mucherie S, Marshall CL, Elam JW, Pellin MJ, Lee B, Lo CT, Seifert S, Winans RE, Calo JM (2007) Highly selective oxidation reactions: Oxidative dehydrogenation of propane (ODHP) by size-selected platinum catalysts and oxidation of alkenes on size-selected silver and gold clusters and nanoparticles. Am Chem Soc Div Petrol Chem 52Google Scholar
  85. 85.
    Sinfelt JH (1985) Bimetallic catalysts. Sci Am 253:90CrossRefGoogle Scholar
  86. 86.
    Taylor TG, Willey KF, Bishop MB, Duncan MA (1990) Photodissociation of mass-selected Bi/Cr and Bi/Fe bimetallic clusters. J Phys Chem 94:8016CrossRefGoogle Scholar
  87. 87.
    Koretsky GM, Kerns KP, Nieman GC, Knickelbein MB, Riley SJ (1999) Reactivity and photoionization studies of bimetallic cobalt-manganese clusters. J Phys Chem A 103:1997CrossRefGoogle Scholar
  88. 88.
    Parks EK, Kerns MP, Riley SJ (2000) The structure of nickel-iron clusters probed by adsorption of molecular nitrogen. Chem Phys 262:151CrossRefGoogle Scholar
  89. 89.
    Koyasu K, Mitsui M, Nakajima A, Kaya K (2002) Photoelectron spectroscopy of palladium-doped gold cluster anions; AunPd (n = 1–4). Chem Phys Lett 358:224CrossRefGoogle Scholar
  90. 90.
    Pramann A, Koyasu K, Nakajima A, Kaya K (2003) Band gap shiftings in Co-doped Nbn (n = 3–15) clusters: Influence of Co 3d electrons on the electronic structure. Int J Mass Spec 229:77CrossRefGoogle Scholar
  91. 91.
    Rexer EF, Jellinek J, Krissinel EB, Parks EK, Riley SJ (2002) Theoretical and experimental studies of the structures of 12-, 13-, and 14-atom bimetallic nickel/aluminum clusters. J Chem Phys 117:82CrossRefGoogle Scholar
  92. 92.
    Giorgio S, Henry CR (2002) Core-shell bimetallic particles, prepared by sequential impregnations. Eur Phys J Appl Phys 20:23CrossRefGoogle Scholar
  93. 93.
    Heemeier M, Carlsson AF, Naschitzki M, Schmal M, Baumer M, Freund HJ (2002) Preparation and characterization of a model bimetallic catalyst: Co–Pd nanoparticles supported on Al2O3. Angew Chem Int Ed 41:4073CrossRefGoogle Scholar
  94. 94.
    Santra AK, Yang F, Goodman DW (2004) The growth of Ag–Au bimetallic nanoparticles on TiO2(110). Surf Sci 548:324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Randall Meyer
    • 1
  • Yu Lei
    • 1
    • 2
  • Sungsik Lee
    • 2
  • Stefan Vajda
    • 2
    • 3
    • 4
  1. 1.Department of Chemical EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Argonne National Laboratory, Chemical Sciences and Engineering DivisionArgonneUSA
  3. 3.Argonne National Laboratory, Center for Nanoscale MaterialsArgonneUSA
  4. 4.Department of Chemical EngineeringYale UniversityNew HavenUSA

Personalised recommendations