The Two Disciplines of Scientific Psychology, or: The Disunity of Psychology as a Working Hypothesis

  • Denny Borsboom
  • Rogier A. Kievit
  • Daniel Cervone
  • S. Brian Hood


Anybody who has some familiarity with the research literature in scientific psychology has probably thought, at one time or another, ‘Well, all these means and correlations are very interesting, but what do they have to do with me, as an individual person?’. The question, innocuous as it may seem, is a deep and complicated one. In contrast to the natural sciences, where researchers can safely assume that, say, all electrons are exchangeable save properties such as location and momentum, people differ from each other. Furthermore, it is not obvious that these differences can be treated as irrelevant to the structure of the organisms in question, i.e., it is not clear that they can be treated as ‘noise’ or ‘error’. The problem permeates virtually every subdiscipline of psychology, and in fact may be one of the reasons that progress in psychology has been limited. As Lykken (1991, pp. 3–4) hypothesizes:


Measurement Invariance Measurement Model Multiple Realizability General Intelligence Personality Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Denny Borsboom’s work was supported by NWO innovational research grant no. 452-07-005.


  1. Amidzic, O., Riehle, H. J., Fehr, T., Wienbruch, C., & Elbert, T. (2001). Pattern of focal γ-bursts in chess players. Nature 412, 603.PubMedCrossRefGoogle Scholar
  2. Anderson, M. (1992). Intelligence and development. Cambridge: Blackwell.Google Scholar
  3. Ashton, M. C., & Lee, K. (2007). The HEXACO model of personality structure and the importance of the H factor. Social and Personality Psychology Compass, 2, 1952–1962.CrossRefGoogle Scholar
  4. Bandura, A., & Walters, R. H. (1963). Social learning and personality development. New York: Holt, Rinehart, & Winston.Google Scholar
  5. Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  6. Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71, 230–244.PubMedCrossRefGoogle Scholar
  7. Boomsma, D. I., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3, 872–882.PubMedCrossRefGoogle Scholar
  8. Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64, 1089–1108.PubMedCrossRefGoogle Scholar
  10. Borsboom, D., & Dolan, C. V. (2006). Why g is not an adaptation: A comment on Kanazawa. Psychological Review, 113, 433–437.PubMedCrossRefGoogle Scholar
  11. Borsboom, D., & Dolan, C. V. (2007). Theoretical equivalence, measurement, invariance, and the idiographic filter. Measurement, 5, 236–263.CrossRefGoogle Scholar
  12. Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203–219.PubMedCrossRefGoogle Scholar
  13. Cervone, D. (1991). The two disciplines of personality psychology. Psychological Science, 2, 371–377.CrossRefGoogle Scholar
  14. Cervone, D. (2004). The architecture of personality. Psychological Review , 111, 183–204.PubMedCrossRefGoogle Scholar
  15. Cervone, D. (2005). Personality architecture: Within-person structures and processes. Annual Review of Psychology, 56, 423–452.PubMedCrossRefGoogle Scholar
  16. Cervone, D., Caldwell, T. L., Fiori, M., Orom, H., Shadel, W. G., & Kassel, J., et al. (2008). What underlies appraisals?: Experimentally testing a knowledge-and-appraisal model of personality architecture among smokers contemplating high-risk situations. Journal of Personality, 76, 929–967.PubMedCrossRefGoogle Scholar
  17. Cervone, D., & Mischel, W. (Eds.). (2002). Advances in personality science. New York: Guilford Press.Google Scholar
  18. Churchland, P. (1981). Eliminative materialism and the propositional attitudes. Journal of Philosophy, 78, 67–90.CrossRefGoogle Scholar
  19. Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 612–684.CrossRefGoogle Scholar
  20. Danziger, K. (2000). Making social psychology experimental: A conceptual history, 1920–1970. Journal of the History of the Behavioral Sciences, 36, 329–347.PubMedCrossRefGoogle Scholar
  21. Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. De Groot, A. D. (1978). Thought and choice in chess. Den Haag, Mouton.Google Scholar
  23. Ellis, J. L., & Wollenberg, A. L. v. d. (1993). Local homogeneity in latent trait models: A characterization of the homogeneous monotone IRT model. Psychometrika, 58, 417–429.CrossRefGoogle Scholar
  24. Eysenck, H. J. (1970). The structure of personality. (3rd ed.). London: Methuen.Google Scholar
  25. Fodor, J. (1974). The special sciences, or: The disunity of psychology as a working hypothesis. Synthese, 28, 97–115.CrossRefGoogle Scholar
  26. Fodor, J. (1997). Special sciences: Still autonomous after all these years. Nous, 31, 149–163.CrossRefGoogle Scholar
  27. Freud, S. (1900/1953). The interpretation of dreams. Standard Edition (Vol. 4, pp. 1–338; Vol. 5, pp.339–621). London: Hogarth Press. Google Scholar
  28. Freud, S. (1923/1961). The ego and the id . Standard Edition (Vol. 18, pp. 12–66). London: Hogarth Press. Google Scholar
  29. Gardner, H. (1993). Frames of mind. New York: Basic books.Google Scholar
  30. Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of inter-individual differences in neural plasticity as an explanatory mechanism. Psychological Review, 109, 116–136.PubMedCrossRefGoogle Scholar
  31. Greenberg, J., Koole, S. L., & Pyszczynski, T. (Eds.). (2004). Handbook of experimental existential psychology. New York: Guilford Press.Google Scholar
  32. Gödel, K. (1931). Über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I. In Feferman, S. (1986). Kurt Gödel: Collected Works, (Vol. 1, pp. 144–195). Oxford: Oxford University Press.Google Scholar
  33. Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 48, 26–34.PubMedCrossRefGoogle Scholar
  34. Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate time series analysis. Multivariate Behavior Research, 40, 207–233.CrossRefGoogle Scholar
  35. Hamaker, E. L., Nesselroade, J. R., & Molenaar, P. C. M. (2007). The integrated trait-state model. Journal of Research in Personality, 41, 295–315.CrossRefGoogle Scholar
  36. Harré, R. (1998). The singular self: An introduction to the psychology of personhood. London: Sage.Google Scholar
  37. Hermans, H. J. M. (2001). The construction of a personal position repertoire: Method and practice. Culture and Psychology, 7, 323–365.CrossRefGoogle Scholar
  38. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 35, 245–254.CrossRefGoogle Scholar
  39. Jansen, B. R. J., & Van der Maas, H. L. J. (2002). The development of children’s rule use on the balance scale task. Journal of Experimental Child Psychology, 81, 383–416.PubMedCrossRefGoogle Scholar
  40. Jensen, A. (1998). The g factor. Westport: Praeger.Google Scholar
  41. Jensen, A. (2002). Psychometric g: Definition and substantiation. In R. J. Sternberg & E. L. Grigorenko (Eds.), The general factor of intelligence: How general is it? (pp. 39–54). Mahwah: Erlbaum.Google Scholar
  42. John, O. P., & Srivastava, S. (1999). The big-five factor taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 102–138). New York: Guilford Press.Google Scholar
  43. Kanazawa, S. (2004). General intelligence as a domain-specific adaptation. Psychological Review, 111, 512–523.PubMedCrossRefGoogle Scholar
  44. Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921–926.PubMedCrossRefGoogle Scholar
  45. Kuhl, J., & Koole, S. L. (2004). Workings of the will: A functional approach. In J. Greenberg, S. L. Koole, & T. Pyszczynski (Eds.), Handbook of experimental existential psychology (pp. 411–430). New York: Guilford.Google Scholar
  46. Lamiell, J. T. (1987). The psychology of personality: An epistemological inquiry. New York: Columbia University Press.Google Scholar
  47. Lykken, D. T. (1991). What’s wrong with psychology anyway? In D. Cicchetti & W. M. Grove (Eds.), Thinking clearly about psychology. Vol. 1: Matters of public interest (pp. 3–39). Minneapolis, MN: University of Minnesota Press.Google Scholar
  48. McCrae, R. R., & Costa, P. T., Jr. (1996). Toward a new generation of personality theories: Theoretical contexts for the five-factor model. In J. S. Wiggins (Ed.), The five-factor model of personality: Theoretical perspectives (pp. 51–87). New York: Guilford.Google Scholar
  49. McCrae, R. R., & Costa, P. T., Jr. (2008). Empirical and theoretical status of the five-factor model of personality traits. In G. Boyle, G. Matthews, & D. Saklofske (Eds.), Sage handbook of personality theory and assessment (Vol. 1, pp. 273–294). Los Angeles: Sage.Google Scholar
  50. Meredith, W. (1993). Measurement invariance, factor analysis, and factorial invariance. Psychometrika, 58, 525–543.CrossRefGoogle Scholar
  51. Miele, F. (2002). Intelligence, race, and genetics: Conversations with Arthur Jensen. Boulder, CO: Westview Press.Google Scholar
  52. Mischel, W., & Shoda, Y. (1995). A cognitive-affective system theory of personality: Reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychological Review, 102, 246–286.PubMedCrossRefGoogle Scholar
  53. Molenaar, P. C. M. (1999). Longitudinal analysis. In H. J. Ader & G. J. Mellenbergh (Eds.), Research methodology in the social, behavioural, and life sciences (pp. 143–167). London: Sage.Google Scholar
  54. Molenaar, P. C. M. (2004). A manifesto on psychology as ideographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2, 201–218.CrossRefGoogle Scholar
  55. Molenaar, P. C. M., Boomsma D. I., & Dolan, C. V. (1993). A third source of developmental differences. Behavior Genetics, 23, 519–524.PubMedCrossRefGoogle Scholar
  56. Molenaar, P. C. M., Huizenga, H. M., & Nesselroade, J. R. (2003). The relationship between the structure of interindividual and intraindividual variability: A theoretical and empirical vindication of developmental systems theory. In U. M. Staudinger & U. Lindenberger (Eds.), Understanding human development: Dialogues with lifespan psychology (pp. 339–360). Dordrecht: Kluwer Academic Publishers.Google Scholar
  57. Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557–585.CrossRefGoogle Scholar
  58. Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, England: Cambridge University Press.Google Scholar
  59. Posthuma, D., de Geus, E. J. C., Baaré, W. F. C., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5, 83–84.PubMedCrossRefGoogle Scholar
  60. Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, 13, 238–241.Google Scholar
  61. Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge: Cambridge University Press. Google Scholar
  62. Sternberg, R. J., & Grigorenko, E. L. (2001). Unified psychology. American Psychologist, 56, 1069–1079.PubMedCrossRefGoogle Scholar
  63. Timmerman, M. E., Ceulemans, E., Lichtwarck-Aschoff, A., & Vansteeland, K. (2009). Multilevel simultaneous component analysis for studying intra-individual variability and inter-individual differences. In J. Valsiner & P. C. M. Molenaar (Eds.), Developmental process methodology in the social and developmental sciences (pp. 291–318). New York: Springer.Google Scholar
  64. Van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861.PubMedCrossRefGoogle Scholar
  65. Van Geert, P. (1991). A dynamic systems model of cognitive and language growth. Psychological Review, 98, 3–53.CrossRefGoogle Scholar
  66. Van Rijn, P. (2008). Categorical time series in psychological measurement. University of Amsterdam, Unpublished doctoral dissertation.Google Scholar
  67. Verguts, T., & De Boeck, P. (2002). The induction of solution rules in Raven’s Progressive Matrices test. European Journal of Cognitive Psychology, 14, 521–547.CrossRefGoogle Scholar
  68. Whitehead, A. N., & Russell, B. (1910). Principia mathematica. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Denny Borsboom
    • 1
  • Rogier A. Kievit
  • Daniel Cervone
  • S. Brian Hood
  1. 1.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations