Cassava

  • Hernán Ceballos
  • Emmanuel Okogbenin
  • Juan Carlos Pérez
  • Luis Augusto Becerra López-Valle
  • Daniel Debouck
Part of the Handbook of Plant Breeding book series (HBPB, volume 7)

Abstract

Cassava (Manihot esculenta Crantz) is the most important crop among the tropical root and tuber crops (Pujol et al., 2002; Meireles da Silva et al., 2003). Along with maize (Zea mays L.), sugarcane (Saccharum spp.), and rice (Oryza sativa L.), cassava is among the most important sources of energy in the diet of most tropical countries of the world.

References

  1. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135: 187–204.CrossRefGoogle Scholar
  2. Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105: 521–525.PubMedCrossRefGoogle Scholar
  3. Allard RW (1960) Principles of plant breeding. Wiley, New York, NY.Google Scholar
  4. Allem AC (1994) Manihot germplasm collecting priorities. Report of the First Meeting of the International Network for Cassava Genetic Resources, International Plant Genetic Resources Institute, International Crop Network Series No. 10, Rome, pp. 87–110.Google Scholar
  5. Allem AC (1990) The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica 107: 123–133.CrossRefGoogle Scholar
  6. Allem AC (2002) The origins and taxonomy of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 1–16.CrossRefGoogle Scholar
  7. Allem AC, Mendes RA, Salomão AN, Burle ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz subspecies esculenta, Euphorbiaceae). Euphytica 120: 127–132.CrossRefGoogle Scholar
  8. Alves AAC (2002) Cassava botany and physiology. In: Hillocks RJ, Tresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 67–89.CrossRefGoogle Scholar
  9. Andersen MD, Busk PK, Svendsen I, Møller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. J Biol Chem 275(3): 1966–1975.PubMedCrossRefGoogle Scholar
  10. Asiedu R, Hahn SK, Bai KV, Dixon AGO (1992) Introgression of genes from wild relatives into cassava. In: Akoroda MO, Arene OB (eds.) Proceedings of the 4th Triennial Symposium of the International Society for Tropical Root Crops – Africa Branch. ISTRC-AB/IDRC/IITA, Nigeria, pp. 89–91.Google Scholar
  11. Balagopalan C (2002) Cassava utilization in food, feed and industry. In: Hillocks RJ, Tresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 301–318.CrossRefGoogle Scholar
  12. Babu L, Chatterjee SR (1999) Protein content and amino acid composition of cassava tubers and leaves. J Root Crops 25(20): 163–168.Google Scholar
  13. Baker RJ (1986) Selection indices in plant breeding. CRC Press, Boca Raton, FL.Google Scholar
  14. Beeching JR, Marmey P, Gavalda MC, Noirot M, Haysom HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava (Manihot esculenta Cranz) germplasm using molecular markers. Ann Bot 72: 515–520.CrossRefGoogle Scholar
  15. Bellotti AC (2002) Arthropod pests. In: Hillocks RJ, Thresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 209–235.CrossRefGoogle Scholar
  16. Bertram RB (1993) Application of molecular techniques resources of cassava (Manihot esculenta Crantz, Euphorbiaceae) interspecific evolutionary relationships and intraspecific characterization. PhD. Thesis, University of Maryland.Google Scholar
  17. Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Marker-Assisted Selection (MAS) in Crops, Livestock, Forestry and fish: current status and the way forward. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 81–115.Google Scholar
  18. Buitrago AJ (1990) La yuca en la alimentación animal. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 446p.Google Scholar
  19. Cadavid López LF, Gil Llanos L (2003) Investigación en producción de yuca forrajera en Colombia. Informe annual de Actividades CLAYUCA. Apdo Aéreo 6713, Cali, Colombia, pp. 266–275.Google Scholar
  20. Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005a) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Heredity 96(5): 586–592.CrossRefGoogle Scholar
  21. Cach TN, Lenis JI, Perez JC, Morante N, Calle F, Ceballos H (2005b) Inheritance of relevant traits in cassava (Manihot esculenta Crantz) for sub-humid conditions. Plant Breed 124:1–6.CrossRefGoogle Scholar
  22. Calderón-Urrea A (1988) Transformation of Manihot esculenta (cassava) using Agrobacterium tumefaciens and expression of the introduced foreing genes in transformed cell lines. M.Sc. Thesis, Vrije University, Brussels, Belgium.Google Scholar
  23. Calle F, Perez JC, Gaitán W, Morante N, Ceballos H, Llano G, Alvarez E (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144(1–2): 177–186.CrossRefGoogle Scholar
  24. Calvert LA, Thresh JM (2002) The viruses and virus diseases of cassava. In: Hillocks RJ, Thresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 237–260.CrossRefGoogle Scholar
  25. Carvalho LJCB, de Souza CRB, Cascardo JCM, Junior CB, Campos L (2004) Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Mol Biol 56: 643–659.PubMedCrossRefGoogle Scholar
  26. Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56: 503–515.PubMedCrossRefGoogle Scholar
  27. Ceballos H, Fregene M, Lentini Z, Sánchez T, Puentes YI, Pérez JC, Rosero A, Tofiño AP (2006a) Development and identification of high-value cassava clones. Acta Hortic 703:63–70.Google Scholar
  28. Ceballos H, Sánchez T, Chávez AL, Iglesias C, Debouck D, Mafla G, Tohme J (2006b) Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. J Food Comp Anal 19:589–593.CrossRefGoogle Scholar
  29. Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C (2007a) Discovery of an Amylose-free Starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55(18): 7469–7476.PubMedCrossRefGoogle Scholar
  30. Ceballos H, Fregene M, Pérez JC, Morante N, Calle F (2007b) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds.) Breeding major food staples, Blackwell Publishing. Ames, IA, pp. 365–391.CrossRefGoogle Scholar
  31. Ceballos H, Sánchez T, Denyer K, Tofiño AP, Rosero EA, Dufour D, Smith A, Morante N, Pérez JC, Fahy B (2008) Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 56(16): 7215–7222.PubMedCrossRefGoogle Scholar
  32. Chavarriaga-Aguirre P, Maya MM, Tohme J, Duque MC, Iglesias C, Bonierbale MW, Kreovich S, Fand Kochert G (1999) Using microsatellite, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA based markers to maintain germplasm collections. Mol Breed 5: 263–273.CrossRefGoogle Scholar
  33. Chavarriaga P, Prieto S, Herrera CJ, Lopez D, Bellotti A, Tohme J (2004) Screening transgenic unveils apparent resistance to hornworm (E. ello) in the non-transgenic, African cassava clone 60444. In: Alves A, Tohme J (eds.) Adding value to a small farmer crop. Proceedings of the 6th International Scientific Meeting. Cassava Biotech Network, Book of Abstracts, p. 4. CIAT, Cali, Colombia.Google Scholar
  34. Chavez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143: 125–133.CrossRefGoogle Scholar
  35. Chavez AL, Bedoya JM, Sánchez T, Iglesias CA, Ceballos H, Roca W (2000) Iron, carotene, and ascorbic acid in cassava roots and leaves. Food Nutr Bull. 21: 410–413.Google Scholar
  36. Chávez AL, Sánchez T, Morante N, Pérez JC, Calle F, Ceballos H (2009) Progress in developing a system for direct and simple measurement of protein content in cassava roots. Proceeding of the 15th Triennial Symposium of the International Society for Tropical Root Crops, Centro International de la Papa (CIP), Lima, Peru, 2–6 November.Google Scholar
  37. CIAT (Centro Internacional de Agricultura Tropical) (2001) Project IP3, Improved cassava for the developing world, Annual Report 2001, Apdo Aéreo 6713, Cali, Colombia.Google Scholar
  38. CIAT (Centro Internacional de Agricultura Tropical) (2002) Project IP3, Improved cassava for the developing world, Annual Report 2002, Apdo Aéreo 6713, Cali, Colombia.Google Scholar
  39. CIAT (Centro Internacional de Agricultura Tropical) (2009) Project IP3, Improved cassava for the developing world, Annual Report 2008, Apdo Aéreo 6713, Cali, Colombia.Google Scholar
  40. Cock J (1985) Cassava. New potential for a neglected crop. Westview Press. Boulder, CO, 240pp.Google Scholar
  41. Contreras Rojas M, Pérez JC, Ceballos H, Baena D, Morante N, Calle F (2009) Introduction of inbreeding and analysis of inbreeding depression in eight S1 cassava families. Crop Sci 49: 543–548.CrossRefGoogle Scholar
  42. Cuambe CE (2007) Evaluación del deterioro fisiológico postcosecha y mapeo preliminar de QTLs en el primer retrocruzamiento derivado del híbrido inter-específico (CW429-1) entre Manihot esculenta Crantz y la especie silvestre Manihot walkerae Croizat, M.Sc. Degree Thesis, National University of Colombia, Palmira Campus, 74p, December 2007.Google Scholar
  43. Davis JP, Supatcharee N, Khandelwal RL, Chibbar RN (2003) Synthesis of novel starches in planta: opportunities and challenges. Starch/Stärke 55: 107–120.CrossRefGoogle Scholar
  44. de Carvalho RD, Guerra M (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136: 159–168.PubMedCrossRefGoogle Scholar
  45. DeVires J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. Chapter 13: cassava. CABI Publishing, Oxon, UK and New York, NY. pp. 147–156.Google Scholar
  46. Dixon AGO, Asiedu R, Bokanga M (1994) Breeding of cassava for low cyanogenic potential: problems, progress and perspectives. Acta Hortic 375: 153–161.Google Scholar
  47. Du L, Bokanga M, Møller BL, Halkier BA (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry 39(2): 323–326.CrossRefGoogle Scholar
  48. Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds.) The genetic exploitation of heterosis in Crops. American Society of Agronomy, Madison, WI, pp. 19–29.Google Scholar
  49. Egesi CN, Ogbe FO, Akoroda M, Ilona P, Dixon A (2007) Resistance profile of improved cassava germplasm to cassava mosaic disease in Nigeria. Euphytica 155: 215–224.CrossRefGoogle Scholar
  50. Eke-Okoro ON, Okereke OU, Okeke JE, (2001) Effect of stake sizes on some growth indices and yield of three cassava cultivars (Manihot esculenta). J Agric Sci 137: 419–426.CrossRefGoogle Scholar
  51. Elias M, Panaud O, Robert T (2000) Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85: 219–230.PubMedCrossRefGoogle Scholar
  52. Elias M, McKey D, Panaud O, Anstett MC, Robert T, (2001a) Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): perspectives for on-farm conservation of crop genetic resources. Euphytica 120: 143–157.CrossRefGoogle Scholar
  53. Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T, (2001b) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz) in a traditional farming system. Mol Ecol 10: 1895–1907.PubMedCrossRefGoogle Scholar
  54. Ellis RH, Hong TD, Roberts EH (1982) An investigation of the influence of constant and alternating temperature on the germination of cassava seed using a two-dimensional temperature gradient plate. Ann Bot 49: 241–246.Google Scholar
  55. Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial uses. J Sci Food Agric 77: 289–311.CrossRefGoogle Scholar
  56. FAO. FAOSTAT database (various years). http://www.fao.org.
  57. Fehr WR (ed.) (1987) Genetic contributions to yield gains of five major crop plants. Crop Science Society of America, Madison, WI, 101p.Google Scholar
  58. Fregene M, Angel F, Gomez R, Rodríguez F, Chavarriaga P, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95: 431–441.CrossRefGoogle Scholar
  59. Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet 100: 678–685.CrossRefGoogle Scholar
  60. Fregene M, Puonti-Kaerlas J (2002) Cassava biotechnology. In: Hillocks RJ, Thresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 179–207.CrossRefGoogle Scholar
  61. Fregene M, Tohme J, Roca W, Chavarriaga P, Escobar R, Ceballos H (2002) Biotecnología de yuca. . In: Ceballos H, Ospina B (eds.) La Yuca en el Tercer Milenio. CIAT, Cali, Colombia. pp. 377–405.Google Scholar
  62. Fregene MH, Matsumura A, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host-plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56: 563–571.PubMedCrossRefGoogle Scholar
  63. Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39: 1295–1301.CrossRefGoogle Scholar
  64. Gardner CO (1961) An evaluation of effects of mass selection and seed irradiation with thermal neutrons on yields of corn. Crop Sci 1: 241–245.CrossRefGoogle Scholar
  65. Gonçalvez Fukuda WM, Fukuda C, Leite Cardoso CE, Lima Vanconcelos O, Nunes LC (2000) Implantação e evolução dos trabalhos de pesquisa participativa em melhoramento de mandioca no nordeste Brasileiro, Documento CNPMF No. 92, EMBRAPA, Cruz das Almas, Bahia, Brazil.Google Scholar
  66. Gonçalvez Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in Northeastern Brazil, Document CNPMF No. 99, EMBRAPA, Cruz das Almas, Bahia, Brazil.Google Scholar
  67. Gomez G, Santos J, Valdivieso M (1983) Utilización de raíces y productos de yuca en alimentación animal. In: Domínguez CE (ed.) Yuca: investigación, producción y utilización. Working Document No. 50. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.Google Scholar
  68. Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79: 433–439CrossRefGoogle Scholar
  69. Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crops Res 2: 193–226.CrossRefGoogle Scholar
  70. Hahn SK, Terry ER, Leuschner K (1980a) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29: 673–683.CrossRefGoogle Scholar
  71. Hahn SK, Howland AK, Terry ER (1980b) Correlated resistance to cassava to mosaic and bacterial blight diseases. Euphytica 29: 305–311.CrossRefGoogle Scholar
  72. Hallauer AR, Miranda Fo JB (1988) Quantitative genetics in maize breeding. 2nd edn. Iowa State University Press. Ames, IA, pp. 45–114.Google Scholar
  73. Han Y, Gómez-Vásquez R, Reilly K, Li H, Tohme J, Cooper RM, Beeching JR (2001) Hydroxyproline-rich glycoproteins expressed during stress responses in cassava. Euphytica 120: 59–70.CrossRefGoogle Scholar
  74. Haysom HR, Chan TLC, Hughes MA (1994) Phylogenetic relationships of Manihot species revealed by restriction fragment length polymorphism. Euphytica 76: 227–234.CrossRefGoogle Scholar
  75. Hershey CH (1984) Breeding cassava for adaptation to stress conditions: development of a methodology. In: Proceedings of the 6th Symposium of the International Society for Tropical Root Crops, Lima, Peru, pp. 20–25, February, 1983.Google Scholar
  76. Hilloocks RJ, Wydra K (2002) Bacterial, fungal and nematode diseases. In: Hillocks RJ, Thresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 261–280.CrossRefGoogle Scholar
  77. Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132: 1119–1210.Google Scholar
  78. Howeler R (2007) Agronomic practices for sustainable cassava production in Asia. In: Centro Internacional de Agricultura Tropical (CIAT). Cassava research and development in Asia: exploring new opportunities for an ancient crop. Proceedings of the Seventh Regional Workshop held in Bangkok, Thailand, pp. 288–314, October 28–November 1, 2002.Google Scholar
  79. Iglesias CA, Hershey C (1994) Cassava breeding at CIAT: heritability estimates and genetic progress in the 1980s In: Ofori F, Hahn SK (eds.), Tropical Root Crops in a Developing Economy. ISTRC/ISHS, Wageningen, pp. 149–163.Google Scholar
  80. Iglesias CA, Hershey C, Calle F, Bolaños A (1994) Propagating cassava (Manihot esculenta Crantz) by sexual seed. Exp Agric 30: 283–290.CrossRefGoogle Scholar
  81. Iglesias CA, Mayer J, Chávez AL, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94: 367–373.CrossRefGoogle Scholar
  82. Janssens M (2001) Cassava. In: Raemaekers RH, (ed.) Crop production in tropical Africa. Directorate General for International Co-operation (DGIC), Brussels, pp. 165–187.Google Scholar
  83. Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, Arias B, Bellotti AC (2005) Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Sci 45: 1058–1063.CrossRefGoogle Scholar
  84. Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. Euphytica, 12: 69–76.CrossRefGoogle Scholar
  85. Jennings DL (1976) Breeding for resistance to African cassava mosaic. African cassava mosaic report of an interdisciplinary workshop held at Muguga, Kenya. IDRC071e, pp. 39–44Google Scholar
  86. Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh JM, Bellotti AC (eds.) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp. 149–166.CrossRefGoogle Scholar
  87. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7: 210–218.PubMedCrossRefGoogle Scholar
  88. Jorge V, Fregene M, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). Theor Appl Genet 101: 865–872.CrossRefGoogle Scholar
  89. Kawano K (1980) Cassava. In: Fehr WR, Hadley, HH (eds.) Hybridization of crop plants. ASA, CSSA. Madison, WI, pp. 225–233.Google Scholar
  90. Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43: 1325–1335.CrossRefGoogle Scholar
  91. Kawano K, Daza P, Amaya A, Ríos M, Gonçalvez MF (1978) Evaluation of cassava germplasm for productivity. Crop Sci 18: 377–380.CrossRefGoogle Scholar
  92. Kawano K, Narintaraporn K, Narintaraporn P, Sarakarn S, Limsila A, Limsila J, Suparhan D, Sarawat V, Watananonta W (1998) Yield improvement in a multistage breeding program for cassava. Crop Sci 38(2): 325–332.CrossRefGoogle Scholar
  93. Kizito EB, Bua A, Fregene M, Egwang T, Gullberg U, Westerbergh A (2005) The effect of cassava mosaic disease on the genetic diversity of cassava in Uganda. Euphytica 146: 45–54.CrossRefGoogle Scholar
  94. Ladino J, Mancilla LI, Chavarriaga P, Tohme J, Roca WM (2001) Transformation of cassava cv. TMS60444 with A. tumefaciens carrying a cry 1Ab gene for insect resistance. Proceeding of the Fifth International Scientific Meeting of the Cassava Biotechnology Network, Donald Danforth Plant Science Center, St. Louis, MO, 4–9 November, 2001.Google Scholar
  95. Lehman U, Robin F (2007) Slowly digestible starch – its structure and health implications: a review. Trends Food Sci Technol 18: 346–355CrossRefGoogle Scholar
  96. Lenis JI, Calle F, Jaramillo G, Pérez JC, Ceballos H, Cock J (2006) Leaf retention and cassava productivity. Field Crops Res 95(2–3): 126–134.CrossRefGoogle Scholar
  97. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AGO, Igenbrecht IL (2007) Characterization of a 18166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-response genes. Plant Cell Rep 26: 1605–1618.PubMedCrossRefGoogle Scholar
  98. Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56(4): 541–554.PubMedCrossRefGoogle Scholar
  99. Magoon ML, Krishnan R, Bai KV (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34: 612–626.CrossRefGoogle Scholar
  100. Maluszynski M, Szarejko I, Barriga P, Balcerzyk A (2001) Heterosis in crop mutant crosses and production of high yielding lines using double haploid systems. Euphytica 120: 387–398.CrossRefGoogle Scholar
  101. Mba REC, Stephenson P, Edwards K, Melzer S, Mkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102: 21–31.CrossRefGoogle Scholar
  102. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123: 439–442.PubMedCrossRefGoogle Scholar
  103. McMahon JM, White WLB, Sayre RT (1995) Cyanogenesis in cassava (Manihot esculenta Crantz). J Exp Bot 46: 731–741.CrossRefGoogle Scholar
  104. McSween S, Walker T, Salegua V, Pitoro R (2006) Economic impact on food security of varietal tolerance to cassava brown streak disease in coastal Mozambique, Research Report Series No. 1E, Institute of Agricultural Research of Mozambique, Maputo, Mozambique.Google Scholar
  105. Mkumbira JL, Chiwona-Karltun U, Lagercrantz N, Meso Mahungu J, Saka A, Mhone M, Bokanga L, Brimer U, Gullberg U, Rosling H (2003) Classification of cassava into ‘bitter’ and ‘cool’ in Malawi: from farmers’ perception to characterisation by molecular markers. Euphytica 132:7–22.CrossRefGoogle Scholar
  106. Meireles da Silva R, Bandel G, Martins PS (2003) Mating system in an experimental garden composed of cassava (Manihot esculenta Crantz) ethnovarieties. Euphytica 134: 127–135.CrossRefGoogle Scholar
  107. Morante N, Moreno X, Pérez JC, Calle F, Lenis JI, Ortega E, Jaramillo G, Ceballos H (2005) Precision of selection in early stages of cassava genetic improvement. J Root Crops 31: 81–92.Google Scholar
  108. Morante N, Sánchez T, Ortiz D, Chávez AL, Calle F, Ceballos H (2009) Progress increasing carotenoids content in cassava roots. Proceeding of the 15th Triennial Symposium of the International Society for Tropical Root Crops, Lima, Peru.Google Scholar
  109. Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL (2010) Tolerance to post-harvest physiological deterioration in cassava roots. Crop Sci 50: 1333–1338.CrossRefGoogle Scholar
  110. Munyikwa TRI, Lageveld S, Salehuzzaman SNIM, Jacobsen E, Visser RGF (1997) Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica 96: 65–75.CrossRefGoogle Scholar
  111. Nassar NMA, Ortiz R (2008) Cassava genetic resources: manipulation for crop improvement. Plant Breed Rev 31: 247–275.Google Scholar
  112. Neuenschwander P (1994) Control of cassava mealybug in Africa: lessons from a biological control project. Afr Crop Sci J 2: 369–383.Google Scholar
  113. Nyiira ZM (1975) Advances in research on the economic significance of the green cassava mite Mononychellus tanajoa Bondar in Uganda. International exchange and testing of cassava germplasm in Africa. In: Terry ER, MacIntyre R (eds.) Proceedings of an Interdisciplinary Workshop, Ibadan, Nigeria, 17–21. November 1975. IDRC-063e, Ottawa, ON, pp. 22–29.Google Scholar
  114. Okogbenin E, Fregene M (2002) Genetic analysis and QTL mapping of early root bulking in an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 106: 58–66.PubMedGoogle Scholar
  115. Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava Euphytica 147: 433–440.CrossRefGoogle Scholar
  116. Okogbenin E, Porto MCM, Egesi C, Mba C, Ospinosa E, Guillermo Santos L, Ospina C, Marin J, Barera E, Gutierrez J, Ekanayake I, Iglesias C, Fregene M (2007) Marker aided introgression of CMD resistance in Latin American Germplasm for genetic improvement of cassava in Africa. Crop Sci 47: 1895–1904.CrossRefGoogle Scholar
  117. Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88(1): 131–142.PubMedCrossRefGoogle Scholar
  118. Perez JC, Ceballos H, Jaramillo G, Morante N, Calle F, Arias B, Bellotti AC (2005a) Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci 45: 1491–1496.CrossRefGoogle Scholar
  119. Perez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Alvarez E (2005b) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145(1–2): 77–85.CrossRefGoogle Scholar
  120. Pérez JC, Ceballos H, Ramirez IC, Lenis JI, Calle F, Morante N, Jaramillo G, Lentini D del C (2010) Adjustment for missing plants in cassava evaluation trials. Euphytica 172(1): 59–65.CrossRefGoogle Scholar
  121. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131: 866–871.PubMedCrossRefGoogle Scholar
  122. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. In: IBPS Proceeding published by Crop Science Society of America. Crop Sci 47: 88–105.CrossRefGoogle Scholar
  123. Pujol B, Gigot G, Laurent G, Pinheiro-Kluppel M, Elias M, Hossaert-McKey M, McKey D (2002) Germination ecology of cassava (Manihot esculenta Crantz Euphorbiaceae) in traditional agroecosystems: seed and seedling biology of a vegetatively propagated domesticated plant. Econ Bot 56: 366–379.CrossRefGoogle Scholar
  124. Puonti-Kaerlas J, Frey P, Potrykus I (1997) Development of meristem gene transfer techniques for cassava. Afr J Root Tuber Crops 2: 175–180.Google Scholar
  125. Rajendran PG, Ravindran CS, Nair SG, Nayar TVR (2000) True cassava seeds (TCS) for rapid spread of the crop in non-traditional areas. Central Tuber Crops Research Institute (Indian Council of Agricultural Research). Thiruvananthapuram, 695 017, Kerala, India.Google Scholar
  126. Reilly K, Gomez-Vasquez R, Buschman H, Tohme J, Beeching JR (2003) Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol Biol 53: 669–685.CrossRefGoogle Scholar
  127. Reilly K, Bernal D, Cortes DF, Gomez-Vasquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64: 187–203.PubMedCrossRefGoogle Scholar
  128. Reilly K, Han Y, Tohme J, Beeching JR (2001) Isolation and characterization of a cassava catalase expressed during post-harvest physiological deterioration. Biochim Biophys Acta 1518: 317–323.PubMedCrossRefGoogle Scholar
  129. Roa AC, Maya MM, Duque M, Allem C, Tohme J, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95: 741–750.CrossRefGoogle Scholar
  130. Rogers DJ (1963) Studies of Manihot esculenta Crantz and related species. Bull Torrey Bot Club 90: 43–54.CrossRefGoogle Scholar
  131. Rogers DJ, Appan SG (1973) Manihot and manihotoides (Euphorbiaceae). A computer-assisted study. Flora Neotropica. Monograph No. 13. Hafner Press, New York, NY. 272p.Google Scholar
  132. Salik J, Cellinese N, Knapp S (1997) Indigenous diversity of cassava: generation, maintenance, use and loss among Amuesha, Peruvian upper Amazon. Econ Bot 51: 6–19.CrossRefGoogle Scholar
  133. Sambatti JBM, Martins PS, Ando A (2001) Folk taxonomy and evolutionary dynamics of cassava: a case study in Ubatuba, Brazil. Econ Bot 55: 93–105.CrossRefGoogle Scholar
  134. Sánchez T, Mafla G, Morante N, Ceballos H, Dufour D, Calle F, Moreno X, Pérez JC, Debouck D (2009) Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch/Stärke 61: 12–19.CrossRefGoogle Scholar
  135. Sánchez G, Restrepo S, Duque M, Fregene M, Bonierbale M, Verdier V (1999) AFLP assessment of genetic variability in cassava accessions (Manihot esculenta) resistant and susceptible to cassava bacterial blight (CBB). Genome 42: 163–172.PubMedGoogle Scholar
  136. Scott GJ, Rosegrant MW, Ringler C (2000) Roots and tubers for the 21st century. Trends, projections, and policy options. International Food Policy Research Institute (IFPRI)/Centro Internacional de la papa (CIP). Washington, DC, 64p.Google Scholar
  137. Second G, Allem A, Emperaire L, Ingram C, Colombo C, Mendes R, Carvalho L (1997) AFLP based Manihot and cassava numerical taxanomy and genetic structure analysis in progress: implications for dynamic conservation and genetic mapping. Afr J Root Tuber Crops 2: 140–147.Google Scholar
  138. Segovia RJ, Bedoya A, Triviño W, Ceballos H, Gálvez G, Ospina PB (2002) Metodología para el Endurecimiento de ‘vitroplantas’ de yuca. In: Ceballos H, Ospina B (eds.) La Yuca en el Tercer Milenio. CIAT, Cali, Colombia, pp. 573–584.Google Scholar
  139. Sharma V, Rausch KD, Tumbleson ME, Singh V (2007) Comparison between granular starch hydrolyzing enzyme and conventional enzymes for ethanol production form maize starch with different amylose:amylopectin ratios. Starch/ Stärke 59: 549–556.CrossRefGoogle Scholar
  140. Sherman TD, Vaughn KC, Duke SO (1996) Mechanisms of action and resistance to herbicides. In: Duke SO (ed.) Herbicide resistant crops. CRC Press, Boca Ratón, FL, pp. 13–35.Google Scholar
  141. Simmonds NW, Smartt J (1999) Principles of crop improvement. Blackwell Science, London.Google Scholar
  142. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30: 227–238.CrossRefGoogle Scholar
  143. Swanson MM, Harrison BD (1994) Properties, relationships and distribution of cassava germiviruses. Trop Sci 34: 15–25.Google Scholar
  144. Tan SY, Bowe S (2008) Developing herbicide-tolerant crops from mutations. FAO/IAEA International Symposium on Induced Mutations in Plants, Vienna, Austria, p. 134, 12–15 August.Google Scholar
  145. Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30: 195–204.PubMedCrossRefGoogle Scholar
  146. Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61: 246–257.PubMedCrossRefGoogle Scholar
  147. Taylor N, Cavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56: 671–688.PubMedCrossRefGoogle Scholar
  148. Thu LTN, Gheewala SH, Garvait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41: 4135–4142.CrossRefGoogle Scholar
  149. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13: 524–530.PubMedCrossRefGoogle Scholar
  150. Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46: 528–543.CrossRefGoogle Scholar
  151. van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E (2000) The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric 80: 1866–1873.CrossRefGoogle Scholar
  152. Wheatley CC, Sanchez T, Orrego JJ (1993) Quality evaluation of the core cassava collection at CIAT. In: Roca WM, Thro AM (eds.), Proceedings of the 1st International, Scientific Meeting of the Cassava Biotechnology Network, Cartagena, Colombia, August 1992. CIAT, Cali, Colombia, pp. 255–264.Google Scholar
  153. Wheatley CC, Chuzel G (1995) Cassava: the nature of the tuber and use as a raw material. In: Macrae R, Robinson RK, Sadler MJ (eds.) Encyclopedia of food science, food technology and nutrition, Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hernán Ceballos
    • 1
    • 2
  • Emmanuel Okogbenin
    • 1
    • 3
  • Juan Carlos Pérez
    • 1
  • Luis Augusto Becerra López-Valle
    • 1
  • Daniel Debouck
    • 1
  1. 1.International Center for Tropical Agriculture (CIAT), Apartado AéreoCaliColombia
  2. 2.Universidad Nacional de ColombiaPalmiraColombia
  3. 3.National Root Crops Research Institute (NRCRI)UmudikeNigeria

Personalised recommendations