Oxytocin and Appetite

  • Céline Caquineau
  • Gareth LengEmail author


Oxytocin is best known as a circulating hormone that is secreted from the posterior pituitary gland (the neurohypophysis) to mediate uterine contractions during parturition and which is essential for milk let-down during suckling. However, oxytocin is also released in the brain where it influences several behaviors. In particular, it facilitates reproductive and social behaviors including maternal behavior, while inhibiting some other behaviors, including eating behavior. Oxytocin neurons in the hypothalamus are activated during feeding, and this activation follows the arrival of food in the gut, as a response to the activation of gastric vagal afferents. Within the brain, oxytocin acts at two key sites to inhibit feeding; at the nucleus tractus solitarii (NTS) in the brainstem, and at the ventromedial nucleus of the hypothalamus (VMN). Peripheral secretion of oxytocin acts at the heart to stimulate sodium excretion (natriuresis) mediated via the release of atrial natriuretic peptide (ANP), and in some species oxytocin also has a direct action at the kidney.


Atrial Natriuretic Peptide Nucleus Tractus Solitarii Oxytocin Receptor Prairie Vole POMC Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Agouti-related protein


Area postrema


Arcuate nucleus




Central nervous system


Endoplasmic reticulum



Ins (1,4,5)P3



Inositol-1,4,5-triphosphate receptor






Melanocortin receptor 4


Alpha-melanocyte stimulating hormone


Neuropeptide Y


Nucleus of the solitary tract


Optic chiasm


Oxytocin receptor


Phospholipase C






Paraventricular nucleus


Reserve pool


Readily releasable pool


Single-minded 1


Supraoptic nucleus


Ventromedial nucleus of the hypothalamus


Third ventricle



The authors thank Mike Ludwig, Nancy Sabatier, and Vicky Tobin for assistance with, and ­providing photomicrographs for, Figs. 20.1, 20.3, and 20.4.


  1. Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG. Brain Res. 2003;993:30–41.PubMedCrossRefGoogle Scholar
  2. Blevins JE, Schartz MW, Baskin DG. Am J Physiol. 2004;287:87–96.Google Scholar
  3. Borg J, Melander O, Johansson L, Uvnäs-Moberg K, Rehfeld JF, Ohlsson B. BMC Gastroenterol. 2009;9:17.PubMedCrossRefGoogle Scholar
  4. Brennan AJ, Sharp JA, Lefevre C, Topcic D, Auguste A, Digby M, et al. J Dairy Sci. 2007;90 Suppl 1:E66–75.PubMedCrossRefGoogle Scholar
  5. Caquineau C, Leng G, Guan XM, Jiang M, Van der Ploeg L, Douglas AJ. J Neuroendocrinol. 2006;18:685–91.PubMedCrossRefGoogle Scholar
  6. Carter CS. Physiol Behav. 2003;79:383–97.PubMedCrossRefGoogle Scholar
  7. Chaillou E, Baumont R, Tramu G, Tillet Y. Eur J Neurosci. 2000;12:4515–24.PubMedGoogle Scholar
  8. Douglas AJ, Johnstone LE, Leng G. Physiol Behav. 2007;91:352–65.PubMedCrossRefGoogle Scholar
  9. Dyball REJ, Leng G. J Physiol. 1986;380:239–56.PubMedGoogle Scholar
  10. Ferguson JN, Young LJ, Insel TR. Front Neuroendocrinol. 2002;23:200–24.PubMedCrossRefGoogle Scholar
  11. Gimpl G, Reitz J, Brauer S, Trossen C. Prog Brain Res. 2008;170:193–204.PubMedCrossRefGoogle Scholar
  12. Goldstone AP. Prog Brain Res. 2006;153:57–73.PubMedCrossRefGoogle Scholar
  13. Gulia KK, Mallick HN, Kumar VM. Neuroscience. 2003;116:921–3.PubMedCrossRefGoogle Scholar
  14. Gutkowska J, Antunes-Rodrigues J, McCann SM. Physiol Rev. 1997;77:465–515.PubMedGoogle Scholar
  15. Håkansson ML, Meister B. Neuro­endo­crinology. 1998;6:420–7.PubMedCrossRefGoogle Scholar
  16. Holder JR. Am J Endocrinol Metab. 2004;287:E105–13.CrossRefGoogle Scholar
  17. Hull EM, Du J, Lorrain DS, Matuszewich L. J Neurosci. 1995;15:7465–71.PubMedGoogle Scholar
  18. Hung CC, Luan J, Sims M, Keopgh JM, Hall C, Wareham NJ, et al. Int J Obes. 2007;31:429–34.CrossRefGoogle Scholar
  19. Insel TR, Young L. Nat Rev Neurosci. 2001;2:129–36.PubMedCrossRefGoogle Scholar
  20. Johnstone LE, Fong TM, Leng G. Cell Metab. 2006;4:313–21.PubMedCrossRefGoogle Scholar
  21. Keverne EB, Kendrick KM. Ann NY Acad Sci. 1992;652:83–101.PubMedCrossRefGoogle Scholar
  22. Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR. Mol Endocrinol. 2008;22:1723–34.PubMedCrossRefGoogle Scholar
  23. Leng G, Ludwig M. J Neuroendocrinol. 2006;18:379–92.PubMedCrossRefGoogle Scholar
  24. Ludwig M, Leng G. Nat Rev Neurosci. 2006;7:126–36.PubMedCrossRefGoogle Scholar
  25. Leng G, Onaka T, Caquineau C, Sabatier N, Tobin V, Takayangi Y. Prog Brain Res. 2007;170:137–51.CrossRefGoogle Scholar
  26. Leng G, Onaka T, Caquineau C, Sabatier N, Tobin V, Takayangi Y. Prog Brain Res. 2008;170:137–51.CrossRefGoogle Scholar
  27. Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, Young LJ. Nature. 2004;429:754–7.PubMedCrossRefGoogle Scholar
  28. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, et al. Nature. 1994;371:799–802.PubMedCrossRefGoogle Scholar
  29. Martin WJ, McGowan E, Cashen DE, Gantert LT, Drisko JE, Hom GJ, et al. Eur J Pharmacol. 2002;454:71–9.PubMedCrossRefGoogle Scholar
  30. Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, et al. Hum Mol Genet. 2001;10:1465–73.PubMedCrossRefGoogle Scholar
  31. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Mol Endocrinol. 1994;8:1298–308.PubMedCrossRefGoogle Scholar
  32. Ohlsson B, Björgell O, Ekberg O, Darwiche G. BMC Gastroenterol. 2006;6:11.PubMedCrossRefGoogle Scholar
  33. Pederson CA, Asher JA, Monroe YL, Prange AJ. Science. 1982;216:648–50.CrossRefGoogle Scholar
  34. Poggioli R, Vergoni AV, Marrama D, Giuliani D, Bertolini A. Neuropeptides. 1990;16:169–72.PubMedCrossRefGoogle Scholar
  35. Russell JA, Leng G, Douglas AJ. Front Neuroendocrinol. 2003;24:27–61.PubMedCrossRefGoogle Scholar
  36. Russell JA, Leng G. J Endocrinol. 1998;157:343–59.PubMedCrossRefGoogle Scholar
  37. Sabatier N. J Neuroendocrinol. 2006;18:703–10.PubMedCrossRefGoogle Scholar
  38. Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan X, et al. J Neurosci. 2003;23:10351–8.PubMedGoogle Scholar
  39. Saito TR, Tatsuno T, Takeda A, Hashimoto H, Suzuki M, Terada M, et al. Exp Anim. 2004;53:445–51.PubMedCrossRefGoogle Scholar
  40. Schumacher M, Coirini H, Frankfurt M, McEwen BS. Proc Natl Acad Sci USA. 1989;86:6798–67801.PubMedCrossRefGoogle Scholar
  41. Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. NeuroReport. 2008;19:951–5.PubMedCrossRefGoogle Scholar
  42. Tung YCL, Ma M, Piper S, Coll A, O’Rahilly S, Yeo GSH. J Neurosci. 2008;28:12419–26.PubMedCrossRefGoogle Scholar
  43. Waldherr M, Neumann ID. Proc Natl Acad Sci USA. 2007;104:16681–4.PubMedCrossRefGoogle Scholar
  44. Wang GJ, Volkow ND, Fowler JS. Expert Opin Ther Targets. 2002;6:601–9.PubMedCrossRefGoogle Scholar
  45. Wessells H, Gralnek D, Dorr R, Hruby VJ, Hadley ME, Levine N. Urology. 2000;56:641–6.PubMedCrossRefGoogle Scholar
  46. Wisse BE, Schwartz MW. Nat Neurosci. 2003;6:655–6.PubMedCrossRefGoogle Scholar
  47. Zingg HH, Laporte SA. Trends Endocrinol Metab. 2003;14:222–7.PubMedCrossRefGoogle Scholar
  48. Witt DM, Insel TR. J Neuroendocrinol. 1994;6:13–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Integrative PhysiologyUniversity of EdinburghEdinburghUK

Personalised recommendations