Interaction Between Chloroplasts and Mitochondria: Activity, Function, and Regulation of the Mitochondrial Respiratory System during Photosynthesis

  • Keisuke YoshidaEmail author
  • Ko Noguchi
Part of the Advances in Plant Biology book series (AIPB, volume 1)


Activities of the plant mitochondrial respiratory system are flexibly and drastically modulated in response to variations in natural conditions, such as the light environment. Accumulating studies addressing the interactions between chloroplasts and mitochondria have provided evidence for the critical importance of the mitochondrial respiratory system for optimal photosynthetic performance. In this organelle cross-talk, several unique reactions and components in the plant mitochondria, such as the photorespiratory metabolism and the non-proton-pumping respiratory pathways, play key roles. In this chapter, we review recent advances of understanding about the activity, function, and regulation of the mitochondrial respiratory system during photosynthesis.


Alternative oxidase Organelle cross-talk Photorespiration Photosynthesis Redox-shuttling 



Alternative oxidase




Cytochrome c oxidase


Cytochrome pathway


Glycine decarboxylase complex


Mitochondrial retrograde regulation




External type II NAD(P)H dehydrogenase


Internal type II NAD(P)H dehydrogenase


Type II NAD(P)H dehydrogenases


Pyruvate dehydrogenase complex


Reactive oxygen species

TCA cycle

Tricarboxylic acid cycle


Uncoupling protein



We acknowledge Drs. K. Oikawa, S. Mano, and Prof. M. Nishimura (National Institute for Basic Biology) for kindly providing the image shown in Fig. 15.1b. We also acknowledge Prof. W. Sakamoto (Okayama University), Drs. D. Tholen (CAS-MPG Partner Institute), and K. Iwabuchi (Osaka University) for helpful advice.


Cyclic electron transport around photosystem I (CET-PSI):

Photosynthetic electron transport depending solely on the photosystem I (PSI) photochemical reaction, not on the photosystem II (PSII). Because electrons are recycled from NAD(P)H or ferredoxin to plastoquinone (PQ), CET-PSI can generate ΔpH without accumulating NADPH.

Light-enhanced dark respiration (LEDR):

A large transient increase in the respiratory rate detected during light-dark transfer in photosynthetic eukaryotes. LEDR reflects an increased supply of nonphotorespiratory substrates that accumulate during photosynthesis.


Nonphotorespiratory CO2 release rate in the light.


Reductant transport machinery across the organelle envelope. For example, Malate (Mal)-oxaloacetate (OAA) shuttle, Mal-aspartate (Asp) shuttle and triose phosphate (TP)-phosphoglycerate (PGA) shuttle are known.


  1. Armstrong, A. F., Wardlaw, K. D., Atkin, O. K. 2007. Assessing the relationship between respiratory acclimation to the cold and photosystem II redox poise in Arabidopsis thaliana. Plant Cell Environ 30:1513–1522.PubMedCrossRefGoogle Scholar
  2. Atkin, O. K., Millar, A. H., Gardeström, P., Day, D. A. 2000. Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In Photosynthesis: Physiology and Metabolism, eds. R. C. Leegood, T. D. Sharkey, S. von Caemmerer, pp. 153–175. Dordrecht: Kluwer.Google Scholar
  3. Balmer, Y., Vensel, W. H., Tanaka, C. K., Hurkman, W. J., Gelhaye, E., Rouhier, N., Jacquot, J.-P., Manieri, W., Schürmann, P., Droux, M., Buchanan, B. B. 2004. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647.PubMedCrossRefGoogle Scholar
  4. Bartoli, C. G., Gomez, F., Gergoff, G., Guiamét, J. J., Puntarulo, S. 2005. Upregulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot 53:1269–1276.CrossRefGoogle Scholar
  5. Bartoli, C. G., Yu, J., Gómez, F., Fernández, L., McIntoch, L., Foyer, C. H. 2006. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631.PubMedCrossRefGoogle Scholar
  6. Baurain, D., Dinant, M., Coosemans, N., Metagne, R. F. 2003. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiol 131:1418–1430.PubMedCrossRefGoogle Scholar
  7. Buchanan, B. B., Balmer, Y. 2005. Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220.PubMedCrossRefGoogle Scholar
  8. Budde, R. J. A., Randall, D. D. 1990. Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc Natl Acad Sci USA 87:673–676.PubMedCrossRefGoogle Scholar
  9. Bykova, N. V., Egsgaard, H., Møller, I. M. 2003. Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540:141–146.PubMedCrossRefGoogle Scholar
  10. Bykova, N. V., Keerberg, O., Pärnik, T., Bauwe, H., Gardeström, P. 2005. Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase. Planta 222:130–140.PubMedCrossRefGoogle Scholar
  11. Campbell, W. J., Ogren, W. L. 1990. Glyoxylate inhibition of ribulose bisphosphate carboxylase/oxygenase activation in intact, lysed and reconstituted chloroplasts. Photosynth Res 23:257–268.CrossRefGoogle Scholar
  12. Cardol, P., Alric, J., Girard-Bascou, J., Franck, F., Wollman, F.-A., Finazzi, G. 2009. Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106: 15979–15984.PubMedCrossRefGoogle Scholar
  13. Cardol, P., Gloire, G., Havaux, M., Remacle, C., Matagne, R., Franck, F. 2003. Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020.PubMedCrossRefGoogle Scholar
  14. Carrari, F., Nunes-Nesi, A., Gibon, Y., Lytovchenko, A., Loureiro, M. E., Fernie, A. R. 2003. Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminates leaves of wild species tomato. Plant Physiol 133:1322–1335.PubMedCrossRefGoogle Scholar
  15. Carrie, C., Murcha, M. W., Kuehn, K., Duncan, O., Barthet, M., Smith, P. M., Eubel, H., Meyer, E., Day, D. A., Millar, A. H., Whelan, J. 2008. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana. FEBS Lett 582:3073–3079.PubMedCrossRefGoogle Scholar
  16. Clifton, R., Lister, R., Parker, K. L., Sappl, P. G., Elhafez, D., Millar, A. H., Day, D. A., Whelan, J. 2005. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212.PubMedCrossRefGoogle Scholar
  17. Cournac, L., Latouche, G., Cerovic, Z., Redding, K., Ravenel, J., Peltier, G. 2002. In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928.PubMedCrossRefGoogle Scholar
  18. Djajanegara, I., Finnegan, P. M., Mathieu, C., McCabe, T., Whelan, J., Day, D. A. 2002. Regulation of alternative oxidase gene expression in soybean. Plant Mol Biol 50:735–742.PubMedCrossRefGoogle Scholar
  19. Dutilleul, C., Driscoll, S., Cornic, G., De Paepe, R., Foyer, C. H., Noctor, G. 2003a. Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275.PubMedCrossRefGoogle Scholar
  20. Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chétrit, P., Foyer, C. H., De Paepe, R. 2003b. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226.PubMedCrossRefGoogle Scholar
  21. Dutilleul, C., Lelarge, C., Prioul, J.-L., De Paepe, R., Foyer, C. H., Noctor, G. 2005. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139:64–78.PubMedCrossRefGoogle Scholar
  22. Ebbighausen, H., Jia, C., Heldt, H. W. 1985. Oxaloacetate translocator in plant mitochondria. Biochim Biophys Acta 810:184–199.CrossRefGoogle Scholar
  23. Elhafez, D., Murcha, M. W., Clifton, R., Soole, K. L., Day, D. A., Whelan, J. 2006. Characterization of mitochondrial alternative NAD(P)H dehydrogenase in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol 47:43–54.PubMedCrossRefGoogle Scholar
  24. Escobar, M. A., Franklin, K. A., Svensson, A. S., Salter, M. G., Whitelam, G. C., Rasmusson, A. G. 2004. Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiol 136:2710–2721.PubMedCrossRefGoogle Scholar
  25. Escobar, M. A., Geisler, D. A., Rasmusson, A. G. 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45:775–788.PubMedCrossRefGoogle Scholar
  26. Eubel, H., Lee, C. P., Kuo, J., Meyer, E. H., Taylor, N. L., Millar, A. H. 2007. Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J 52:583–594.PubMedCrossRefGoogle Scholar
  27. Finnegan, P. M., Soole, K. L., and Umbach, A. L. 2004. Alternative mitochondrial electron transport proteins in higher plants. In Plant Mitochondria: From Genome to Function, eds. D. A. Day, A. H. Millar, J. Whelan, pp. 163–230. London: Kluwer.Google Scholar
  28. Finnegan, P. M., Whelan, J., Millar, A. H., Zhang, Q., Smith, M. K., Wiskich, J. T., Day, D. A. 1997. Differential expression of the multigene family encoding the soybean mitochondrial alternative oxidase. Plant Physiol 114:455–466.PubMedCrossRefGoogle Scholar
  29. Flügge, U.-I. 1999. Phosphate translocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50:27–45.PubMedCrossRefGoogle Scholar
  30. Foyer, C. H., Bloom, A. J., Queval, G., Noctor, G. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484.PubMedCrossRefGoogle Scholar
  31. Foyer, C. H., Noctor, G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364.CrossRefGoogle Scholar
  32. Franklin, K. A., Larner, V. S., Whitelam, G. C. 2005. The signal transducing photoreceptors of plants. Int J Dev Biol49:653–664.PubMedCrossRefGoogle Scholar
  33. Gálvez, S., Lancien, M., Hodges, M. 1999. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci 4:484–490.PubMedCrossRefGoogle Scholar
  34. Gardeström, P., Igamberdiev, A. U., Raghavendra, A. S. 2002. Mitochondrial functions in the light and significance to carbon-nitrogen interactions. In Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, eds. C. H. Foyer, G. Noctor, pp. 151–172. Dordrecht: Kluwer.Google Scholar
  35. Gardeström, P., Wigge, B. 1988. Influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol, studied by rapid fractionation of barley (Hordeum vulgare) protoplasts. Plant Physiol 88:69–76.PubMedCrossRefGoogle Scholar
  36. Geisler, D. A., Broselid, C., Hederstedt, L., Rasmusson, A. G. 2007. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 282:28455–28464.PubMedCrossRefGoogle Scholar
  37. Gelhaye, E., Rouhier, N., Gérard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P.-I., Wingsle, G., Hirasawa, M., Knaff, D. B., Wang, H., Dizengremel, P., Meyer, Y., Jacquot, J.-P. 2004. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545–14550.PubMedCrossRefGoogle Scholar
  38. Giegé, P., Sweetlove, L. J., Cognat, V., Leaver, C. J. 2005. Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512.PubMedCrossRefGoogle Scholar
  39. Giraud, E., Ho, L. H. M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y.-F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H., Whelan, J. 2008. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610.PubMedCrossRefGoogle Scholar
  40. Giraud, E., Van Aken, O., Ho, L. H. M., Whelan, J. 2009. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of Alternative oxidase1a. Plant Physiol 150:1286–1296.PubMedCrossRefGoogle Scholar
  41. Givan, C. V., Kleczkowski, L. A. 1992. The enzymic reduction of glyoxylate and hydroxypyruvate in leaves of higher plants. Plant Physiol 100:552–556.PubMedCrossRefGoogle Scholar
  42. Gray, G. R., Maxwell, D. P., Villarimo, A. R., McIntosh, L. 2004. Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23:497–503.PubMedCrossRefGoogle Scholar
  43. Gutierres, S., Saber, M., Lelandais, C., Chetrit, P., Diolez, P., Degand, H., Boutry, M., Vedel, F., de Kouchkovsky, Y., De Paepe, R. 1997. Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sulvestris mitochondrial deletion mutants. Proc Natl Acad Sci USA 94: 3436–3441.PubMedCrossRefGoogle Scholar
  44. Hanning, I., Baumgarten, K., Schott, K., Heldt, H. W. 1999. Oxaloacetate transport into plant mitochondria. Plant Physiol 119:1025–1031.PubMedCrossRefGoogle Scholar
  45. Hanning, I., Heldt, H. 1993. On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Plant Physiol 103:1147–1154.PubMedGoogle Scholar
  46. Häusler, R. E., Geimer, S., Kunz, H. H., Schmitz, J., Dörmann, P., Bell, K., Hetfeld, S., Guballa, A., and Flügge, U.-I. 2009. Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts. Plant J 149:515–533.Google Scholar
  47. Heineke, D., Riens, B., Grosse, H., Hoferichter, P., Peter, U., Flügge, U.-I., Heldt, H. W. 1991. Redox transfer across the inner chloroplast envelope membrane. Plant Physiol 95: 1131–1137.PubMedCrossRefGoogle Scholar
  48. Hisabori, T., Motohashi, K., Hosoya-Matsuda, N., Ueoka-Nakanishi, H., Romano, P. G. N. 2007. Towards a functional dissection of thioredoxin networks in plant cells. Photochem Photobiol 83:145–151.PubMedGoogle Scholar
  49. Ho, L. H. M., Giraud, E., Uggalla, V., Lister, R., Clifton, R., Glen, A., Thirkettle-Watts, D., Van Aken, O., Whelan, J. 2008. Identification of regulatory pathways controlling gene expression of stress responsive mitochondrial proteins in Arabidopsis. Plant Physiol 147:1858–1873.PubMedCrossRefGoogle Scholar
  50. Huertas, I. E., Colman, B., Espie, G. S. 2002. Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. Plant Physiol 130:284–291.PubMedCrossRefGoogle Scholar
  51. Igamberdiev, A. U., Gardeström, P. 2003. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta 1606:117–125.PubMedCrossRefGoogle Scholar
  52. Igamberdiev, A. U., Bykova, N. V., Gardeström, P. 1997. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants. FEBS Lett 412:265–269.PubMedCrossRefGoogle Scholar
  53. Igamberdiev, A. U., Bykova, N. V., Lea, P. J., Gardeström, P. 2001. The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111:427–438.PubMedCrossRefGoogle Scholar
  54. Igarashi, D., Miwa, T., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., Ohsumi, C. 2003. Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) in Arabidopsis. Plant J 33:975–987.PubMedCrossRefGoogle Scholar
  55. Ishizaki, K., Larson, T. R., Schauer, N., Fernie, A. R., Graham, I. A., Leaver, C. J. 2005. The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600.PubMedCrossRefGoogle Scholar
  56. Ishizaki, K., Schauer, N., Larson, T. R., Graham, I. A., Fernie, A. R., Leaver, C. J. 2006. The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760.PubMedCrossRefGoogle Scholar
  57. Islam, M. S., Niwa, Y., Takagi, S. 2009. Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 50:1032–1040.PubMedCrossRefGoogle Scholar
  58. Jamai, A., Salomé, P. A., Schilling, S. H., Weber, A. P. M., McClung, C. R. 2009. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21:595–606.PubMedCrossRefGoogle Scholar
  59. Jans, F., Mignolet, E., Houyoux, P.-A., Cardol, P., Ghysels, B., Cuiné, S., Cournac, L., Peltier, G., Remacle, C., Franck, F. 2008. A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551.PubMedCrossRefGoogle Scholar
  60. Juszczuk, I. M., Flexas, J., Szal, B., Dąbrowska, Z., Ribas-Carbo, M., Rychter, A. M. 2007. Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol Plant 131:527–541.PubMedCrossRefGoogle Scholar
  61. Keech, O., Pesquet, E., Ahad, A., Askne, A., Nordvall, D., Vodnala, S. M., Tuominen, H., Hurry, V., Dizengremel, P., Gardeström, P. 2007. The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell Environ 30:1523–1534.PubMedCrossRefGoogle Scholar
  62. Keys, A. J., Leegood, R. C. 2002. Photorespiratory carbon and nitrogen cycling: evidence from studies of mutant and transgenic plants. In Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, eds. C. H. Foyer, G. Noctor, pp. 115–134. Dordrecht: Kluwer.Google Scholar
  63. Kozaki, A., Takeba, G. 1996. Photorespiration protects C3 plants from photooxidation. Nature 384:557–560.CrossRefGoogle Scholar
  64. Kristensen, B. K., Askerlund, P., Bykova, N. V., Egsgaard, H., Møller, I. M. 2004. Identification of oxidized proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851.PubMedCrossRefGoogle Scholar
  65. Krömer, S. 1995. Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 46:45–70.CrossRefGoogle Scholar
  66. Krömer, S., Heldt, H. W. 1991. On the role of mitochondrial oxidative phosphorylation in photosynthesis metabolism as studied by the effect of oligomycin on photosynthesis in protoplasts and leaves of barley. Plant Physiol 95:1270–1276.PubMedCrossRefGoogle Scholar
  67. Krömer, S., Malmberg, G., Gardeström, P. 1993. Mitochondrial contribution to photosynthetic metabolism. Plant Physiol 102:947–955.PubMedGoogle Scholar
  68. Laloi, C., Rayapuram, N., Chartier, Y., Grienenberger, J.-M., Bonnard, G., Meyer, Y. 2001. Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149.PubMedCrossRefGoogle Scholar
  69. Lemaitre, T., Urbanczyk-Wochniak, E., Flesch, V., Bismuth, E., Fernie, A. R., Hodges, M. 2007. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiol 144:1546–1558.PubMedCrossRefGoogle Scholar
  70. Linka, M., Weber, A. P. M. 2005. Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10:461–465.PubMedCrossRefGoogle Scholar
  71. Liu, Y.-J., Norberg, F. E. B., Szilágyi A., De Paepe, R., Akerlund, H.-E., Rasmusson, A. G. 2008. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Plant Cell Physiol 49:251–263.PubMedCrossRefGoogle Scholar
  72. Martí, M. C., Olmos, E., Calvete, J. J., Díaz, I., Barranco-Medina, S., Whelan, J., Lázaro, J. J., Sevilla, F., Jiménez, A. 2009. Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins. Plant Physiol 150:646–657.PubMedCrossRefGoogle Scholar
  73. Matsuo, M., Obokata, J. 2006. Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47:873–882.PubMedCrossRefGoogle Scholar
  74. Maxwell, D. P., Wang, Y., McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276.PubMedCrossRefGoogle Scholar
  75. McDonald, A. E. 2008. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase. Funct Plant Biol 35:535–552.CrossRefGoogle Scholar
  76. Michalecka, A. M., Svensson, A. S., Johansson, F. I., Agius, S. C., Johansson, U., Brennicke, A., Binder, S., Rasmusson, A. G. 2003. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652.PubMedCrossRefGoogle Scholar
  77. Millar, A. H., and Leaver, C. J. 2000. The cytotoxic lipid peroxidation product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria. FEBS Lett 481:117–121.PubMedCrossRefGoogle Scholar
  78. Molen, T. A., Rosso, D., Piercy, S., Maxwell, D. P. 2006. Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiol Plant 127:74–86.CrossRefGoogle Scholar
  79. Møller, I. M., Kristensen, B. K. 2006. Protein oxidation in plant mitochondria detected as oxidized tryptophan. Free Radic Biol Med 40:430–435.PubMedCrossRefGoogle Scholar
  80. Niessen, M., Thiruveedhi, K., Rosenkranz, R., Kebeish, R., Hirsch, H.-J., Kreuzaler, F., Peterhänsel, C. 2007. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J Exp Bot 58:2709–2715.PubMedCrossRefGoogle Scholar
  81. Noctor, G., De Paepe, R., Foyer, C. H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134.PubMedCrossRefGoogle Scholar
  82. Noguchi, K., Taylor, N. L., Millar, A.H., Lambers, H., Day, D. A. 2005. Response of mitochondria to light intensity in the leaves of sun and shade species. Plant Cell Environ 28:760–771.CrossRefGoogle Scholar
  83. Noguchi, K., Terashima, I. 2006. Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ 29:710–719.PubMedCrossRefGoogle Scholar
  84. Noguchi, K., Yoshida, K. 2008. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99.PubMedCrossRefGoogle Scholar
  85. Nunes-Nesi, A., Carrari, F., Gibon, Y., Sulpice, R., Lytovchenko, A., Fisahn, J., Graham, J., Ratcliffe, R. G., Sweetlove, L. J., Fernie, A. R. 2007a. Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106.PubMedCrossRefGoogle Scholar
  86. Nunes-Nesi, A., Carrari, F., Lytovchenco, A., Smith, A. M. O., Loureiro, M. E., Ratcliffe, R. G., Sweetlove, L. J., Fernie, A. R. 2005. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622.PubMedCrossRefGoogle Scholar
  87. Nunes-Nesi, A., Sweetlove, L., Fernie, A. R. 2007b. Operation and function of the tricarboxylic acid cycle in the illuminated leaf. Physiol Plant 129:45–56.CrossRefGoogle Scholar
  88. Nunes-Nesi, A., Sulpice, R., Gibon, Y., Fernie, A. R. 2008. The enigmatic contribution of mitochondrial function in photosynthesis. J Exp Bot 59:1675–1684.PubMedCrossRefGoogle Scholar
  89. Oliver, D. J. 1994. The glycine decarboxylase complex from plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 45:323–337.CrossRefGoogle Scholar
  90. Oliver, D. J., Gardeström, P. 2004. Photorespiration: photosynthesis in the mitochondria. In Plant Mitochondria: From Genome to Function, eds. D. A. Day, A. H. Millar, J. Whelan, pp. 293–306. London: Kluwer.Google Scholar
  91. Padmasree, K., Raghavendra, A. S. 1999a. Importance of oxidative electron transport over oxidative phosphorylation in optimizing photosynthesis in mesophyll protoplasts of pea (Pisum sativum L.). Physiol Plant 105:546–553.CrossRefGoogle Scholar
  92. Padmasree, K., and Raghavendra, A. S. 1999b. Response of photosynthetic carbon assimilation in mesophyll protoplasts to restriction on mitochondrial oxidative metabolism: metabolites related to the redox status and sucrose biosynthesis. Photosynth Res 62:231–239.CrossRefGoogle Scholar
  93. Pärnik, T., Keerberg, O. 2007. Advanced radiogasometric method for the determination of the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates under steady-state photosynthesis. Physiol Plant 129:34–44.CrossRefGoogle Scholar
  94. Peltier, G., Cournac, L. 2002. Chlororespiration. Annu Rev Plant Biol 53:523–550.PubMedCrossRefGoogle Scholar
  95. Priault, P., Fresneau, C., Noctor, G., De Paepe, R., Cornic, G., Streb, P. 2006a. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. J Exp Bot 57:2075–2085.PubMedCrossRefGoogle Scholar
  96. Priault, P., Tcherkez, G., Cornic, G., De Paepe, R., Naik, R., Ghashghaie, J., Streb, P. 2006b. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207.PubMedCrossRefGoogle Scholar
  97. Price, J., Laxmi, A., Martin, S. K. S., Jang, J.-C. 2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150.PubMedCrossRefGoogle Scholar
  98. Rachmilevitch, S., Cousins, A. B., Bloom, A. J. 2004. Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101: 11506–11510.PubMedCrossRefGoogle Scholar
  99. Raghavendra, A. S., Padmasree, K. 2003. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553.PubMedCrossRefGoogle Scholar
  100. Raghavendra, A. S., Reumann, S., Heldt, H. W. 1998. Participation of mitochondrial metabolism in photorespiration: reconstituted system of peroxisomes and mitochondria from spinach leaves. Plant Physiol 116:1333–1337.PubMedCrossRefGoogle Scholar
  101. Rasmusson, A. G., Escobar, M. A. 2007. Light and diurnal regulation of plant respiratory gene expression. Physiol Plant 129:57–67.CrossRefGoogle Scholar
  102. Rasmusson, A. G., Fernie, A. R., van Dongen, J. T. 2009. Alternative oxidase: a defence against metabolic fluctuations? Physiol Plant 137:371–382.PubMedCrossRefGoogle Scholar
  103. Rasmusson, A. G., Geisler, D. A., Møller, I. M. 2008. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60.PubMedCrossRefGoogle Scholar
  104. Reichheld, J.-P., Meyer, E., Khafif, M., Bonnard, G., Meyer, Y. 2005. AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett 579:337–342.PubMedCrossRefGoogle Scholar
  105. Rhoads, D. M., Subbaiah, C. C. 2007. Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194.PubMedCrossRefGoogle Scholar
  106. Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., Siedow, J. N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366.PubMedCrossRefGoogle Scholar
  107. Ribas-Carbo, M., Lennon, A. M., Robinson, S. A., Giles, L., Berry, J. A., Siedow, J. N. 1997. The regulation of electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria. Plant Physiol 113:903–911.PubMedGoogle Scholar
  108. Ribas-Carbo, M., Robinson, S. A., Gonzàlez-Meler, M. A., Lennon, A. M., Giles, L., Siedow, J. N., Berry, J. A. 2000. Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons. Plant Cell Environ 23: 983–989.CrossRefGoogle Scholar
  109. Robinson, S. A., Ribas-Carbo, M., Yakir, D., Giles, L., Reuveni, Y., Berry, J. A. 1995. Beyond SHAM and cyanide: opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust J Plant Physiol 22:487–496.CrossRefGoogle Scholar
  110. Rochaix, J.-D. 2007. Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775.PubMedCrossRefGoogle Scholar
  111. Sabar, M., De Paepe, R., de Kouchkovsky, Y. 2000. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1249.PubMedCrossRefGoogle Scholar
  112. Sakamoto, W. 2006. Protein degradation machineries in plastid. Annu Rev Plant Biol 57:599–621.PubMedCrossRefGoogle Scholar
  113. Scheibe, R. 2004. Malate valves to balance cellular energy supply. Physiol Plant 120:21–26.PubMedCrossRefGoogle Scholar
  114. Schneidereit, J., Häusler, R. E., Fiene, G., Kaiser, W. M., Weber, A. P. M. 2006. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J 45:206–224.PubMedCrossRefGoogle Scholar
  115. Schönfeld, C., Wobbe, L., Borgstädt, R., Kienast, A., Nixon, P. J., Kruse, O. 2004. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem 279:50366–50374.PubMedCrossRefGoogle Scholar
  116. Shen, W., Wei, Y., Dauk, M., Tan, Y., Taylor, D. C., Selvaraj, G., Zou, J. 2006. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18:422–441.PubMedCrossRefGoogle Scholar
  117. Shikanai, T. 2007. Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217.PubMedCrossRefGoogle Scholar
  118. Siedow, J. N., Umbach, A. L. 2000. The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochim Biophys Acta 1459:432–439.PubMedCrossRefGoogle Scholar
  119. Sienkiewicz-Porzucek, A., Nunes-Nesi, A., Sulpice, R., Lisec, J., Centeno, D. C., Carillo, P., Leisse, A., Urbanczyk-Wochniak, E., Fernie, A. R. 2008. Mild reduction in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth. Plant Physiol 147:115–127.PubMedCrossRefGoogle Scholar
  120. Smith, A. M. O., Ratcliffe, R. G., Sweetlove, L. J. 2004. Activation and function of mitochondrial uncoupling protein in plants. J Biol Chem 279:51944–51952.PubMedCrossRefGoogle Scholar
  121. Strodtkötter, I., Padmasree, K., Dinakar, C., Speth, B., Niazi, P. S., Wojtera, J., Voss, I., Do, P. T., Nunes-Nesi, A., Fernie, A. R., Linke, V., Raghavendra, A. S., Scheibe, R. 2009. Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. Mol Plant 2:284–297.PubMedCrossRefGoogle Scholar
  122. Studart-Guimarães, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., Fernie, A. R. 2007. Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation of the r-aminobutyrate shunt in illuminated tomato leaves. Plant Physiol 145:626–639.PubMedCrossRefGoogle Scholar
  123. Svensson, A. S., Rasmusson, A. G. 2001. Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J 28:73–82.PubMedCrossRefGoogle Scholar
  124. Sweetlove, L. J., Foyer, C. H. 2004. Roles for reactive oxygen species and antioxidants in plant mitochondria. In Plant Mitochondria: From Genome to Function, eds. D. A. Day, A. H. Millar, J. Whelan, pp. 307–320. London: Kluwer.Google Scholar
  125. Sweetlove, L. J., Heazlewood, J. L., Herald, V., Holtzapffel, R., Day, D. A., Leaver, C. J., Millar, A. H. 2002. The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904.PubMedCrossRefGoogle Scholar
  126. Sweetlove, L. J., Lytovchenko, A., Morgan, M., Nunes-Nesi, A., Taylor, N. L., Baxter, C. J., Eickmeier, I., Fernie, A. R. 2006. Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci USA 103:19587–19592.PubMedCrossRefGoogle Scholar
  127. Taira, M., Valtersson, U., Burkhardt, B., Ludwig, R. A. 2004. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058.PubMedCrossRefGoogle Scholar
  128. Taniguchi, M., Taniguchi, Y., Kawasaki, M., Takeda, S., Kato, T., Sato, S., Tabata, S., Miyake, H., Sugiyama, T. 2002. Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Physiol 43:706–717.PubMedCrossRefGoogle Scholar
  129. Taylor, N. L., Day, D. A., Millar, A. H. 2002. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277:42663–42668.PubMedCrossRefGoogle Scholar
  130. Taylor, N. L., Heazlewood, J. L., Day, D. A., Millar, A. H. 2005. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 8:1122–1133.Google Scholar
  131. Tcherkez, G., Bligny. R., Gout, E., Mahé, A., Hodges, M., Cornic, G. 2008. Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci USA 105: 797–802.PubMedCrossRefGoogle Scholar
  132. Tcherkez, G., Cornic, G., Bligny, R., Gout, E., Ghashghaie, J. 2005. In vivo respiratory metabolism of illuminated leaves. Plant Physiol 138:1596–1606.PubMedCrossRefGoogle Scholar
  133. Timm, S., Nunes-Nesi, A., Pärnik, T., Morgenthal, K., Wienkoop, S., Keerberg, O., Weckwerth, W., Kleczkowski, L. A., Fernie, A. R., Bauwe, H. 2008. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859.PubMedCrossRefGoogle Scholar
  134. Tovar-Mendéz, A., Miernyk, J. A., Randall, D. D. 2003. Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049.PubMedCrossRefGoogle Scholar
  135. Turko, I. V., Li, L., Aulak, K. S., Stuehr, D. J., Chang, J. V., Murad, F. 2003. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977.PubMedCrossRefGoogle Scholar
  136. Umbach, A. L., Fiorani, F., Siedow, J. N. 2005. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139:1806–1820.PubMedCrossRefGoogle Scholar
  137. Vanlerberghe, G. C., Cvetkovska, M., Wang, J. 2009. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plant 137:392–406.PubMedCrossRefGoogle Scholar
  138. Vanlerberghe, G. C., Ordog, S. H. 2002 Alternative oxidase: integrating carbon metabolism and electron transport in plant respiration. In Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, eds. C. H. Foyer, G. Noctor, pp. 173–191. Dordrecht: Kluwer.Google Scholar
  139. Vercesi, A. E., Borecký, J., Maia, I. G., Arruda, P., Cuccovia, I. M., Chaimovich, H. 2006. Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404.PubMedCrossRefGoogle Scholar
  140. Verniquet, F., Gaillard, J., Neuburger, M., Douce, R. 1991. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 276:643–648.PubMedGoogle Scholar
  141. Watanabe, C. K., Hachiya, T., Terashima, I., Noguchi, K. 2008. The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of anti-oxidant defense systems in Arabidopsis thaliana leaves. Plant Cell Environ 31:1190–1202.PubMedCrossRefGoogle Scholar
  142. Winger, A. M., Millar, H., Day, D. A. 2005. Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochem J 387:865–870.PubMedCrossRefGoogle Scholar
  143. Winger, A. M., Taylor, N. L., Heazlewood, J. H., Day, D. A., Millar, A. H. 2007a. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics 7:4158–4170.PubMedCrossRefGoogle Scholar
  144. Winger, A. M., Taylor, N. L., Heazlewood, J. H., Day, D. A., Millar, A. H. 2007b. The cytotoxic lipid peroxidation product 4-hydroxy-2-nomenal covalently modifies a selective range of proteins linked to respiratory function in plant mitochondria. J Biol Chem 282:37436–37447.PubMedCrossRefGoogle Scholar
  145. Woodson, J.D., Chory, J. 2008. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9: 383–395.PubMedCrossRefGoogle Scholar
  146. Xue, X., Gauthier, D. A., Turpin, D. H., Weger, H. G. 1996. Interactions between photosynthesis and respiration in the green alga Chlamydomonas reinhardtii: characterization of light-enhanced dark respiration. Plant Physiol 112:1005–1014.PubMedGoogle Scholar
  147. Yoshida, K., Noguchi, K. 2009. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol 50:1449–1462.PubMedCrossRefGoogle Scholar
  148. Yoshida, K., Shibata, M., Terashima, I., Noguchi, K. 2010. Simultaneous determination of in vivo plastoquinone and ubiquinone redox states by HPLC-based analysis. Plant Cell Physiol 51:836–841.PubMedCrossRefGoogle Scholar
  149. Yoshida, K., Terashima, I., Noguchi, K. 2006. Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. Plant Cell Physiol 47:22–31.PubMedCrossRefGoogle Scholar
  150. Yoshida, K., Terashima, I., Noguchi, K. 2007. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol 48:606–614.PubMedCrossRefGoogle Scholar
  151. Yoshida, K., Watanabe, C., Kato, Y., Sakamoto, W., Noguchi, K. 2008. Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2. Plant Cell Physiol 49:592–603.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations