Translational Bypassing – Peptidyl-tRNA Re-pairing at Non-overlapping Sites

  • Norma M. WillsEmail author
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


Ribosomal bypassing can lead to the translational fusion of non-contiguous ORFs. It involves dissociation of codon:anticodon pairing in the ribosomal P-site followed by mRNA slippage and re-pairing of the retained tRNA anticodon to mRNA at a non-overlapping codon. It is frame independent. The most studied case involves the bypassing of 50 non-coding nucleotides between codons 46 and 47 of phage T4 gene 60 where half the translating ribosomes successfully accomplish the feat. A nascent peptide signal encoded 5 of the start of the coding gap facilitates the initial codon:anticodon dissociation. An mRNA structure forms in the ribosomal A-site. Only when sequence participating in this structure has passed the ribosomal P-site does the potential for anticodon re-pairing to mRNA at a matched codon arise. After such re-pairing, normal decoding of the A-site codon mediates resumption of standard translation.


Landing Site Stem Loop Codon Pairing mRNA Structure Nascent Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grant ROI GM079523.


  1. Adamski FM, Atkins JF, Gesteland RF (1996) Ribosomal protein L9 interactions with 23S rRNA: The use of translational bypass assay to study the effect of amino acid substitutions. J Mol Biol 261:357–371PubMedCrossRefGoogle Scholar
  2. Baranov PV, Gesteland RF, Atkins JF (2002) Release factor 2 frameshifting sites in different bacteria. EMBO Reports 3:373–377PubMedCrossRefGoogle Scholar
  3. Berk V, Cate JH (2007) Insights into protein biosynthesis from structures of bacterial ribosomes. Curr Opin Struct Biol 17:302–309PubMedCrossRefGoogle Scholar
  4. Bucklin DJ, Wills NM, Gesteland RF, Atkins JF (2005) P-site pairing subtleties revealed by the effects of different tRNAs on programmed translational bypassing where anticodon re-pairing to mRNA is separated from dissociation. J Mol Biol 345:39–49PubMedCrossRefGoogle Scholar
  5. Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucl Acids Res 22:4953–4957PubMedCrossRefGoogle Scholar
  6. Chittum HS, Lane WS, Carlson BA, Roller PP, Lung, F-DT, Lee BJ, Hatfield DL (1998) Rabbit β-globin is extended beyond its UGA codon by multiple suppressions and translational reading gaps. Biochemistry 37:10866–10870PubMedCrossRefGoogle Scholar
  7. Choi KM, Atkins JF, Gesteland RF, Brimacombe R (1998) Flexibility of the nascent polypeptide chain within the ribosome – Contacts from the peptide N-terminus to a specific region of the 30S subunit. Eur J Biochem 255:409–413PubMedCrossRefGoogle Scholar
  8. Devaraj A, Shoji S, Holbrook E.D, Fredrick K (2009) A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15:255–265PubMedCrossRefGoogle Scholar
  9. Gallant J, Bonthuis P, Lindsley D (2003) Evidence that the bypassing ribosome travels through the coding gap. Proc Natl Acad Sci USA 100:13430–13435PubMedCrossRefGoogle Scholar
  10. Gallant J, Bonthuis P, Lindsley D, Cabellon J, Gill G, Heaton K, Kelley-Clarke B, MacDonald L, Mercer S, Vu H, Worsley A (2004) On the role of the starved codon and the takeoff site in ribosome bypassing in Escherichia coli. J Mol Biol 342:713–724PubMedCrossRefGoogle Scholar
  11. Gallant JA, Lindsley D (1998) Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci USA 95:13771–13776PubMedCrossRefGoogle Scholar
  12. Graifer DM, Babkina GT, Matasova NB, Vladimirov SN, Karpova GG, Vlassov VV (1989) Structural arrangement of tRNA binding sites on Escherichia coli ribosomes, as revealed from data on affinity labelling with photoreactive tRNA derivatives. Biochim Biophys Acta 1008:146–156PubMedCrossRefGoogle Scholar
  13. Herbst KL, Nichols LM, Gesteland RF, Weiss RB (1994) A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc Nat. Acad Sci USA 91:12525–12529PubMedCrossRefGoogle Scholar
  14. Herr AJ, Atkins JF, Gesteland RF (1999) Mutations which alter the elbow region of \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) reduce T4 gene 60 translational bypassing efficiency. EMBO J 18:2886–2896PubMedCrossRefGoogle Scholar
  15. Herr AJ, Gesteland RF, Atkins JF (2000) One protein from two open reading frames: Mechanism of a 50nt translational bypass. EMBO J 19:2671–2680PubMedCrossRefGoogle Scholar
  16. Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF (2001a) Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J Mol Biol 309:1029–1048Google Scholar
  17. Herr AJ, Wills NM, Nelson CC, Gesteland RF, Atkins JF (2001b) Drop-off during ribosome hopping. J Mol Biol 311:445–452Google Scholar
  18. Herr AJ, Wills NW, Nelson CC, Gesteland RF, Atkins JF (2004) Factors that influence selection of coding resumption sites in translational bypassing. J Biol Chem 279:11081–11087PubMedCrossRefGoogle Scholar
  19. Hoffman DW, Davies C, Gerchman SE, Kycia JH, Porter SJ, White SW, Ramakrishnan V (1994) Crystal structure of prokaryotic ribosomal protein L9: A bi-lobed RNA-binding protein. EMBO J 13:205–212PubMedGoogle Scholar
  20. Hoffman DW, Cameron CS, Davies C, White SW, Ramakrishnan V (1996) Ribosomal protein L9: A structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J Mol Biol 264:1058–1071PubMedCrossRefGoogle Scholar
  21. Huang WM, Ao S, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:1005–1012PubMedCrossRefGoogle Scholar
  22. Jenner L, Rees B, Yusupov, M, Yusupova G (2007) Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Reports 8:846–850PubMedCrossRefGoogle Scholar
  23. Jin H, Zhao Q, de Valdivia EIG, Ardell DH, Stenström M, Isaksson LA (2006) Influences on gene expression in vivo by a Shine-Dalgarno sequence. Mol Microbiol 60:480–492PubMedCrossRefGoogle Scholar
  24. Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian, G. (1992) Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucl Acids Res 24:6707–6712CrossRefGoogle Scholar
  25. Korostelev A., Ermolenko DN, Noller HF (2008) Structural dynamics of the ribosome. Curr Opin Chem Biol 12:674–683CrossRefGoogle Scholar
  26. Larsen B, Peden J, Matsufuji S, Matsufuji T, Brady K, Maldonado R, Wills NM, Fayet O, Atkins JF, Gesteland RF (1995) Upstream regulators for recoding Biochem. Cell Biol 73:1123–1129Google Scholar
  27. Larsen, B, Wills NM, Gesteland RF, Atkins JF (1994) rRNA-mRNA base pairing stimulates a programmed –1 ribosomal frameshift. J Bacteriol 176:6842–6851PubMedGoogle Scholar
  28. Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, Atkins JF, Gesteland RF, Noller HF (2000) The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J Mol Biol 297:1129–1143PubMedCrossRefGoogle Scholar
  29. Lindsley D, Gallant J (1993) On the directional specificity of ribosome frameshifting at a “hungry” codon. Proc Natl Acad Sci USA 90:5469–5473PubMedCrossRefGoogle Scholar
  30. Lindsley D, Gallant J, Doneanu C, Bonthuis P, Caldwell S, Fontelera A (2005) Spontaneous ribosome bypassing in growing cells. J Mol Biol 349:261–272PubMedCrossRefGoogle Scholar
  31. Maldonado R, Herr AJ (1998) Efficiency of T4 gene 60 translational bypassing. J Bacteriol 180:1822–1830PubMedGoogle Scholar
  32. Manch-Citron JN, Dey A, Schneider R, Nguyebn NY (1999) The translational hop junction and the 5 transcriptional start site for the Prevotella loescheii adhesion encoded by plaA. Curr Microbiol 38:22–26PubMedCrossRefGoogle Scholar
  33. Márquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH (2004) Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118:45–55PubMedCrossRefGoogle Scholar
  34. Murgola EJ, Pagel FT (1980) Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J Mol Biol 138:833–844PubMedCrossRefGoogle Scholar
  35. O’Connor M, Gesteland RF, Atkins JF (1989) tRNA hopping: enhancement by an expanded anticodon. EMBO J 8:4315–4323PubMedGoogle Scholar
  36. O’Mahony DJ, Mims BH, Thompson S, Murgola EJ, Atkins JF (1989) Glycine tRNA mutants with normal anticodon loop size cause –1 frameshifting. Proc Natl Acad Sci USA 86:7979–7983PubMedCrossRefGoogle Scholar
  37. Pagel FT, Tuohy TMF, Atkins JF, Murgola EJ (1992) Doublet translocation at GGA is mediated directly by mutant \({\rm{tRNA}}_{\rm{2}}^{{\rm{Gly}}}\) 2. J Bacteriol 174:4179–4182PubMedGoogle Scholar
  38. Riyasaty S, Atkins JF (1968) External suppression of a frameshift mutant in Salmonella. J Mol Biol 34:541–557PubMedCrossRefGoogle Scholar
  39. Rodnina MV, Fricke R, Wintermeyer W (1994) Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33:12267–12275PubMedCrossRefGoogle Scholar
  40. Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23 S rRNA in the peptidyl transferase center of the ribosome. Nature 377:309–314PubMedCrossRefGoogle Scholar
  41. Sanders CL, Curran JF (2007) Genetic analysis of the E site during RF2 programmed frameshifting. RNA 13:1483–1491PubMedCrossRefGoogle Scholar
  42. Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CM (2009) GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28:755–765Google Scholar
  43. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structure of the bacterial ribosome at 3.5 Å resolution. Science 310:827–834PubMedCrossRefGoogle Scholar
  44. Spahn CMT, Blaha, G., Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J (2001) Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell 7:1037–1045PubMedCrossRefGoogle Scholar
  45. Tsalkova T, Odom OW, Kramer G, Hardesty B (1998) Different conformations of nascent peptides on ribosomes. J Mol Biol 278:713–723PubMedCrossRefGoogle Scholar
  46. Tuohy TMF, Kidd T, Gesteland RF, Atkins JF (1994) Uninterrupted translation through putative 12-nucleotide coding gap in sequence of carA: business as usual. J Bacteriol 176:265–267PubMedGoogle Scholar
  47. Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134PubMedCrossRefGoogle Scholar
  48. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3’ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507PubMedGoogle Scholar
  49. Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2,−1,+1, +2, +5 and +6 ribosomal frameshifting. Cold Spring Harbor Symp. Quant Biol 52:687–693PubMedCrossRefGoogle Scholar
  50. Weiss RB, Huang WM, Dunn DM (1990) A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117–126PubMedCrossRefGoogle Scholar
  51. Wills NM, Ingram JA, Gesteland RF, Atkins JF (1997) Reported translational bypass in a trpR’-lacZ’ fusion is accounted for by unusual initiation and +1 frameshifting. J Mol Biol 271:491–498PubMedCrossRefGoogle Scholar
  52. Wills NM, O’Connor M, Nelson CC, Rettberg CC, Huang WM, Gesteland RF, Atkins JF (2008) Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J 27:2533–2544PubMedCrossRefGoogle Scholar
  53. Wilson DN, Nierhaus KH (2006) The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell Mol Life Sci 63:2725–2737PubMedCrossRefGoogle Scholar
  54. Yusupov M, Yusupova G, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896PubMedCrossRefGoogle Scholar
  55. Yusupova G, Jenner L, Rees B, Moras D and Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Human GeneticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations