Fatty Acid Ratios in Freshwater Fish, Zooplankton and Zoobenthos – Are There Specific Optima?

  • Gunnel AhlgrenEmail author
  • Tobias Vrede
  • Willem Goedkoop


Two groups of polyunsaturated fatty acids (PUFA), termed omega-3 and omega-6 in food (or here as n-3 and n-6 PUFA, respectively), are essential for all vertebrates and probably also for nearly all invertebrates. The absolute concentrations of the different PUFA are important, as is an appropriate balance between the two. The optimal ratio of n-3/n-6 is not known for most organisms but is anticipated to be more or less species-specific (Sargent et al. 1995). The three most important PUFA in vertebrates are eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6). Both EPA and ARA are precursors for biologically active eicosanoids that are vital components of cell membranes and play many dynamic roles in mediating and controlling a wide array of cellular activities (Crawford et al. 1989; Harrison 1990; Henderson et al. 1996; see Chap. 9). Since n-3 and n-6 PUFA cannot be synthesized de novo by most metazoans, they must be included in the diet, either as EPA, DHA and ARA, or as their precursors, such as α-linolenic acid (ALA, 18:3n-3, precursor of EPA and DHA) and linoleic acid (LIN, 18:2n-6, precursor of ARA) (Bell et al. 1986; Sargent et al. 1995). Both ALA and LIN are produced in the thylacoid membranes of algae and plants with chlorophyll (Sargent at al. 1987).


Arctic Charr Feeding Experiment PUFA Content Fatty Acid Ratio Scenedesmus Obliquus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank J. Johansson for chemical analyses, I. Ahlgren for help with collecting references and comments on the early manuscript, and several colleagues, such as J. Persson, M.T. Brett, M. Kainz and C, Schlechtriem, M.T. Arts and O.E. Johannsson, for the use of their data. We also bothered D.C. Müller-Navarra and E. von Elert several times with questions about original data. Important remarks of an anonymous referee improved an earlier version of this work. We are also deeply thankful to the editors, M.T. Arts, M.T. Brett and M. Kainz, whose support and encouragement made this chapter possible.


  1. Abrusán, G., Fink, P., and Lampert, W. 2007. Biochemical limitation of resting egg production in Daphnia. Limnol. Oecanogr. 52:1724–1724CrossRefGoogle Scholar
  2. Acharya, K., Jack, J. D., and Bukaveckas, P. 2005. Dietary effects on life history traits of riverine Bosmina. Freshw. Biol. 50:965–975CrossRefGoogle Scholar
  3. Ackefors, A., Castell, J., and Örde-Öström, I.-L. 1997. Preliminary results on the fatty acid composition of freshwater crayfish, Astacus astacus and Pacifastacus leniusculus, held in captivity. J. World Aquac. Soc. 28:97–105CrossRefGoogle Scholar
  4. Ahlgren, G., Lundstedt, L., Brett, M., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818CrossRefGoogle Scholar
  5. Ahlgren, G., Gustafsson, I.-B., and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50CrossRefGoogle Scholar
  6. Ahlgren, G., Blomqvist, P., Boberg, M., and Gustafsson, I. B. 1994. Fatty acid content of the dorsal muscle – an indicator of fat quality in freshwater fish. J. Fish Biol. 45:131–157Google Scholar
  7. Ahlgren, G., Sonesten, L., Boberg, M., and Gustafsson, I. B. 1996. Fatty acid content of some freshwater fish in lakes of different trophic levels – a bottom-up effect? Ecol. Freshw. Fish 5:15–27CrossRefGoogle Scholar
  8. Ahlgren, G., Carlstein, M., and Gustafsson, I.-B. 1999. Effects of natural and commercial diets on the fatty acid content of European grayling. J. Fish Biol. 55:1142–1155CrossRefGoogle Scholar
  9. Ahlgren, G., Hyenstrand, P., Vrede, T., Karlsson, E., and Zetterberg, S. 2000. Nutritional quality of Scenedesmus quadricauda (Chlorophyceae) grown in different nitrogen regimes and tested on Daphnia. Verh. Internat. Verein. Limnol. 27:1234–1238Google Scholar
  10. Ahlgren, G., Van Nieuwerburgh, L., Wänstrand, I., Pedersén, M., Boberg, M., and Snoeijs, P. 2005. Imbalance of fatty acids in the base of the Baltic Sea food web – a mesocosm study. Can. J. Fish. Aquat. Sci. 62:2240–2253CrossRefGoogle Scholar
  11. Arts, M. T., Ackman, R. G., and Holub, B. J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137CrossRefGoogle Scholar
  12. Becker, C., and Boersma, M. 2005. Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol. Oceanogr. 50:388–397CrossRefGoogle Scholar
  13. Bell, M. V., Henderson, R. J., and Sargent, J. R. 1986. Minireview. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 83B:711–719Google Scholar
  14. Bell, J. G., Ghioni, C., and Sargent, J. R. 1994. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar); a comparison with commercial diets. Aquaculture 128:301–313CrossRefGoogle Scholar
  15. Bell, M. V., Dick, J. R., Thrush, M., and Navarro, J. C. 1996. Decreased 20:4n–6/20:5n–3 ratio in sperm from cultured sea bass, Dicentrarchus labrax, broodstock compared with wild fish. Aquaculture 144:189–199CrossRefGoogle Scholar
  16. Bjarnov, N. 1972. Carbohydrases in Chirononmus, Gammarus and some trichopteran larvae. Oikos 23:261–263CrossRefGoogle Scholar
  17. Boersma, M. 2000. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 45:1157–1161CrossRefGoogle Scholar
  18. Brett, M. T., and Müller-Navarra, D. C. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw. Biol. 38:483–499CrossRefGoogle Scholar
  19. Brett, M. T., Müller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L., and Goldman, C. R. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437CrossRefGoogle Scholar
  20. Broadhurst, C. L., Cunnane, S. C., and Crawford, M. A. 1998. Rift valley lake fish and shellfish provided brain-specific nutrition for early Homo (review article). Br. J. Nutr. 79:3–21PubMedCrossRefGoogle Scholar
  21. Castell, J. D., Bell, J. G., Tocher, D. R., and Sargent, J. R. 1994. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scrophthalmus maximus). Aquaculture 128:315–333CrossRefGoogle Scholar
  22. Copeman, L. A., Parrish, C. C., Brown, J. A., and Harel, M. 2002. Effects of docosahexaenoic, ecosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304CrossRefGoogle Scholar
  23. Crawford, M., and Marsh, D. 1989. The Driving Force. Heinemann, LondonGoogle Scholar
  24. Crawford, M. A., Casperd, N. M., and Sinclair, A. J. 1976. The long chain metabolites of linoleic and linolenic acids in liver and brain in herbivores and carnivores. Comp. Biochem. Physiol. 54B:395–401Google Scholar
  25. Crawford, M. A., Doyle, W., Williams, G., and Drury, P. J. 1989. The role of fats and EFAs for energy and cell structures in the growth of fetus and neonates, pp. 81–115. In A. J. Vergroesen, and M. Crawford [eds.], The role of fats in human nutrition. Academic Press, LondonGoogle Scholar
  26. Crawford, M. A., Bloom, M., Broadhurst, C. L., Schmidt, W. F., Cunnane, S. C., Galli, C., Gehbremeskel, K., Linseisen, F., Lloyd-Smith, L., and Parkinton, J. 1999. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34:S39–S47PubMedCrossRefGoogle Scholar
  27. Dahl, J. 2006. Functional feeding groups of benthic macro-invertebrates in Swedish lakes and streams and the importance of spatial scale. MSc-thesis. Swedish University of Agricultural Sciences, Department of Environmental Assessment, Report 1999:4Google Scholar
  28. Dalsgaard, J., StJohn, M., Kattner, G., Müller-Navarra, D., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–246PubMedCrossRefGoogle Scholar
  29. De Lange, H. J., and Van Donk, E. 1997. Effects of UVB-irradiated algae on life history traits of Daphnia pulex. Freshw. Biol. 38:711–720CrossRefGoogle Scholar
  30. DeMott, W. R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340CrossRefGoogle Scholar
  31. DeMott, W. R., and Müller-Navarra, D. C. 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw. Biol. 38:649–664CrossRefGoogle Scholar
  32. Elendt, B. -P. 1990. Nutritional quality of a microencapsulated diet for Daphnia magna. Effects on reproduction, fatty acid composition, a midgut ultrastructure. Arch. Hydrobiol. 118:461–475Google Scholar
  33. Gardner, W. S., Quigley, M. A., Fahnenstiel, G. L., Scavia, D., and Frez, W. A. 1990. Pontoporeia hoyi – a direct trophic link between spring diatoms and fish in Lake Michigan, pp. 632–644. In M. M. Tiller, and C. Serruya [eds.], Large lakes – ecological structure and function. Springer, New YorkGoogle Scholar
  34. Goedkoop, W., Sonesten, L., Markensten, H., and Ahlgren, G. 2000. Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Can. J. Fish. Aquat. Sci. 57:2267–2279CrossRefGoogle Scholar
  35. Goedkoop, W., Demandt, M., and Ahlgren, G. 2007. Interactions between food quantity and quality (long-chain PUFA concentrations) effects on growth and development of the midge Chironomus riparius Meigen. Can. J. Fish. Aquat. Sci. 64:425–436CrossRefGoogle Scholar
  36. Harrison, K. E. 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J. Shellfish Res. 9:1–28Google Scholar
  37. Henderson, R. J., Tillmanns, M. M., and Sargent, J. R. 1996. The lipid composition of two species of Serasalmid fish in relation to dietary polyunsaturated fatty acids. J. Fish Biol. 48:522–538CrossRefGoogle Scholar
  38. Hessen, D. O., and Leu, E. 2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw. Biol. 51:1987–1998CrossRefGoogle Scholar
  39. Higgs, D. A., Macdonald, J. S., Levings, C. D., and Dosanjh, B. S. 1995. Nutrition and feeding habits in relation to life history stage, pp. 200–280. In C. Groot, L. Margolis, and W. C. Clarke [eds.], Physiological ecology of pacific salmon. UBC Press, VancouverGoogle Scholar
  40. Kainz, M., Arts, M. T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793CrossRefGoogle Scholar
  41. Kainz, M., Telmer, K., and Mazumder, A. 2006. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish. Sci. Total Environ. 368:271–282PubMedCrossRefGoogle Scholar
  42. Koussoroplis, A. M., Lemarchand, C., Bec, A., Desvilettes, C., Amblard, C., Fournier, C., Berny, P., and Bourdier, G. 2008. From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio. Lipids 43:461–466PubMedCrossRefGoogle Scholar
  43. Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., Behrens, P., and Tandler, A. 2001. The effect of dietary arachidonic acid (20:4n–6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193:107–122CrossRefGoogle Scholar
  44. Lürling, M., and Van Donk, E. 1997. Life history consequences for Daphnia pulex feeding on nutrient-limited phytoplankton. Freshw. Biol. 38:693–709CrossRefGoogle Scholar
  45. Maazouzi, C., Masson, G., Izquierdo, M. S., and Pihan, J. C. 2007. Fatty acid composition of the amphipod invader Dikerogammarus villosus: feeding strategies and feeding strategies and trophic links. Comp. Biochem. Physiol. A 147:868–875CrossRefGoogle Scholar
  46. Makhutova, O., Kalachova, G. S., and Gladyshev, M. I. 2003. A comparison of the fatty acid composition of Gammarus lacustris and its food sources from a freshwater reservoir, Bugach, and the saline Lake Shira in Siberia, Russia. Aquat. Ecol. 37:159–167CrossRefGoogle Scholar
  47. Milke, L. M., Bricelj, V. M., and Parrish, C. C. 2006. Comparison of early history stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition. Aquaculture 260:272–289CrossRefGoogle Scholar
  48. Müller-Navarra, D. C. 2006. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: does it contradict? Arch. Hydrobiol. 167:501–513CrossRefGoogle Scholar
  49. Navas, J. M., Thrush, M. A., Ramos, J., Zanuy, S., Carrillo, M., and Bromage, N. 1993. Calidad de puesta y niveles plasmaticos de vitelogenina en reproductores de lubina (Dicentrarchus labrax) mantenidos con diferentes dietas. Actas IV Congreso Nac. Acuicult. 19–24.Google Scholar
  50. Olsen, Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture, pp. 161–202. In M. T. Arts, and B. C. Wainman [eds.], Lipids in freshwater ecosystems. Springer, New YorkGoogle Scholar
  51. Otwell, W. S., and Richards, W. L. 1981/1982. Cultured and wild American eels, Anguilla rostrata: fat content and fatty acid composition. Aquaculture 26:67–76CrossRefGoogle Scholar
  52. Parrish, C. C., Whiticar, M., and Puvanendran, V. 2007. Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnol. Oceanogr. 52:476–479Google Scholar
  53. Persson, J., and Vrede, T. 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51:887–900CrossRefGoogle Scholar
  54. Pickova, J., Kiessling, A., Pettersson, A., and Dutta, P. C. 1999. Fatty acid and carotenoid composition of eggs from two nonanadromous Atlantic salmon stocks of cultured and wild origin. Fish Physiol. Biochem. 21:147–156CrossRefGoogle Scholar
  55. Ravet, J. L., Brett, M. T., and Müller-Navarra, D. C. 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol. Oceanogr. 48:1938–1947CrossRefGoogle Scholar
  56. Ravet, J. L., and Brett, M. T. 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnol. Oceanogr. 51:2438–2452Google Scholar
  57. Repka, S. 1997. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshw. Biol. 37:675–683CrossRefGoogle Scholar
  58. Sargent, J. R. 1995. Origins and functions of egg lipids: nutritional implications, pp. 353–372. In N. R. Bromage, and R. J. Robert [eds.], Brood stock managements and egg and larval quality. Blackwell Science, CambridgeGoogle Scholar
  59. Sargent, J. R., Parkes, R. J., Mueller-Harvey, I., and Henderson, R. J. 1987. Lipid markers in marine ecology, pp. 119–138. In M. A. Sleigh [ed.], Microbes in the sea. Ellis Horwood Ltd, ChichesterGoogle Scholar
  60. Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., and Tocher, D. R. 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11:183–198CrossRefGoogle Scholar
  61. Sargent, J. R., McEvoy, L. A., and Bell, J. G. 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127CrossRefGoogle Scholar
  62. Sargent, J. R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and Tocher, D. 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229CrossRefGoogle Scholar
  63. Schlechtriem, C., Arts, M. T., and Johannsson, O. E. 2008. Effect of long-term fasting on the use of fatty acids as trophic markers in the opossum shrimp Mysis relicta. A laboratory study. J. Great Lakes Res. 34:143–152CrossRefGoogle Scholar
  64. Stanley-Samuelson, D. W. 1994. Prostaglandins and related eicosanoids in insects. Adv. Insect Physiol. 24:115–212CrossRefGoogle Scholar
  65. Sushchik, N. N., Gladyshev, M. I., Moskvichova, A. V., Makhutova, O. N., and Kalachova, G. S. 2003. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei River. Comp. Biochem. Physiol. B 134:111–122PubMedCrossRefGoogle Scholar
  66. Thompson, S. N. 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp. Biochem. Physiol. 45B:467–482Google Scholar
  67. Thrush, M., Navas, J. M. Ramos, J., Bromage, N., Carrillo, M., and Zanuy, S. 1993. The effect of artificial diets on lipid class and total fatty acid composition on cultured sea bass (Dicentrarchus labrax) eggs. Actas IV Congreso Nac. Acuicult. 37–42.Google Scholar
  68. Torres-Ruiz, M., Wehr, J. D., and Perrone, A. A. 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J. N. Am. Benthol. Soc. 26:509–522.Google Scholar
  69. Vanderploeg, H. A., Liebig, J. R., and Gluck, A. A. 1996. Evaluation of different phytoplankton for supporting development of zebra mussel larvae (Dreissena polymorpha): the importance of size and polyunsaturated fatty acid content. J. Great Lakes Res. 22:36–45CrossRefGoogle Scholar
  70. Van Vliet, T., and Katan, M. B. 1990. Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 51:1–2PubMedGoogle Scholar
  71. Von Elert, E. 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 47:1764–1773CrossRefGoogle Scholar
  72. Von Elert, E., and Stampfl, P. 2000. Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshw. Biol. 45:189–200CrossRefGoogle Scholar
  73. Von Elert, E., and Wolffrom, T. 2001. Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnol. Oceanogr. 46:1552–1558CrossRefGoogle Scholar
  74. Von Elert, E., Martin-Creuzburg, D., and Le Coz, J. R. 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. Roy. Soc. B – Biol. Sci. 270:1209–1214CrossRefGoogle Scholar
  75. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. 1991. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266:19995–20000PubMedGoogle Scholar
  76. Wacker, A., and Von Elert, E. 2004. Food quality controls egg quality of the zebra mussel Dreissena polymorpha: the role of fatty acids. Limnol. Oceanogr. 49:1794–1801CrossRefGoogle Scholar
  77. Wacker, A., Becher, P., and Von Elert, E. 2002. Food quality effects of unsaturated fatty acids on larvae of the mussel Deissena polymorpha. Limnol. Oceanogr. 47:1242–1248CrossRefGoogle Scholar
  78. Weers, P. M. M., and Gulati, R. D. 1997a. Effect of addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata. Freshw. Biol. 38:721–729CrossRefGoogle Scholar
  79. Weers, P. M. M., and Gulati, R. D. 1997b. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Clamydomonas reinhardtii. Limnol. Oceanogr. 42:1584–1589CrossRefGoogle Scholar
  80. Weissburg, M. J., Doall, M. H., and Yen, J. 1998. Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Proc. Roy. Soc. B – Biol. Sci. 353:701–712CrossRefGoogle Scholar
  81. Xu, X., Ji, W., Castell, J. D., and O’Dor, R. 1993. The nutritional value of dietary n-3 and n-6 fatty acids for the Chinese prawn (Panaeus chinensis). Aquaculture 118:277–285CrossRefGoogle Scholar
  82. Yang, X., and Dick, T. A. 1994. Arctic char (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss) differ in their growth and lipid metabolism in response to dietary polyunsaturated fatty acids. Can. J. Fish. Aquat. Sci. 51:1391–1400. J. Plankton Res. 14:495–512Google Scholar
  83. Yen, J., Lenz, P. H., Gassie, D. V., and Hartline, D. K. 1992. Mechanoreception in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14:495–512CrossRefGoogle Scholar
  84. Zenebe, T., Ahlgren, G., and Boberg, M. 1998a. Fatty acid content of some freshwater fish of commercial importance from tropical lakes in the Ethiopian Rift Valley. J. Fish Biol. 53:987–1005CrossRefGoogle Scholar
  85. Zenebe, T., Ahlgren, G., Gustafsson, I. B., and Boberg, M. 1998b. Fatty acid and lipid content of Oreochromis niloticus L. in Ethiopian lakes – dietary effects of phytoplankton. Ecol. Freshw. Fish 7:146–158CrossRefGoogle Scholar
  86. Zenebe, T., Boberg, M., Sonesten, L., and Ahlgren, G. 2003. Effects of algal diets and temperature on the growth and fatty acid content of the cichlid fish Oreochromis niloticus L. A laboratory study. Aquat. Ecol. 37:169–182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Ecology and Evolution (Limnology)Uppsala UniversityUppsalaSweden
  2. 2.Department of Ecology and Environmental SciencesUmeå UniversityUmeåSweden
  3. 3.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations