Health and condition in fish: the influence of lipids on membrane competency and immune response

Chapter

Abstract

Traditionally fisheries biologists have used various metrics to indicate the condition and, by implication, health of fish. These indices are usually based on relationships between length and weight (Anderson and Neumann 1996). Although such metrics can, under some circumstances, provide a quick estimate of a fish’s condition, their ability to shed light on the underlying cause-and-effect relationship(s) governing a fish’s health and nutritional status are limited. Biochemical measures (e.g. lipids including fatty acids (FA) and sterols, proteins and their constituent amino acids, and trace elements) offer complimentary measures to assess, in a more specific way, the condition and underlying health of fish. Fatty acids and other lipids affect the health of fish in many ways; including, but not limited to, their effects on growth, reproduction, behavior, vision, osmoregularity, membrane fluidity (thermal adaptation), and immune response. In this review, we focus on the latter two roles that lipids play in mediating the health and condition of fish.

References

  1. Adams, S. M. 1999. Ecological role of lipids in the health and success of fish populations. In M.T. Arts and B.C. Wainman [eds.] , Lipids in Freshwater Ecosystems. Springer, New York, pp. 132–160Google Scholar
  2. Anderson, R. O. and Neumann, R. M. 1996. Length, weight, and associated structures. In B.R. Murphy and D.W. Willis [eds.], Fisheries Techniques, 2nd edition. American Fisheries Society, Bethesda, pp. 447–481Google Scholar
  3. Arts, M. T., Ackman, R. G., and Holub, B. J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137CrossRefGoogle Scholar
  4. Balfry, S. and Higgs, D. A. 2001. Influence of dietary lipid composition on the immune system and disease resistance of finfish. In C. Lim and C.D. Webster [eds.], Nutrition and fish health. Food Products Press, Binghampton, pp. 213–243Google Scholar
  5. Bell, J. G., McVicar, A. H., Park, M. T., and Sargent, J. R. 1991. High dietary linoleic acid affects the fatty acid compositions of individual phospholipids from tissues from Atlantic salmon (Salmo salar): association with stress susceptibility and cardiac lesion. J. Nutrition 121:1163–1172Google Scholar
  6. Bell, J. G., Sargent, J. R., and Raynard, R. S. 1992. Effects of increasing dietary linoleic acid on phospholipid fatty acid composition and eicosanoid production in leucocytes and gill cells in Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes, and Essential Fatty Acids 45:197–206PubMedCrossRefGoogle Scholar
  7. Bell, J. G., Dick, J. R., McVicar, A. H., Sargent, J. R., and Thompson, K. D. 1993. Dietary sunflower, linseed, and fish oils affect phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity, and eicosanoid production in Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes, and Essential Fatty Acids 49:665–673PubMedCrossRefGoogle Scholar
  8. Bell, J. G., Tocher, D. R., MacDonald, F. M., and Sargent, J. R. 1994. Effects of diets rich in linoleic (18:2n-6) and ∝-linolenic (18:3n-3) acids on growth, lipid class and fatty acid compositions and eicosanoid production in juvenile turbot (Scophthalmus maximus L.) Fish Physiol. Biochem. 13:105–118Google Scholar
  9. Bell, J. G., Castell, J. D., Tocher, D. R., MacDonald, F. M., and Sargent, J. R. 1995. Effects of different dietary arachidonic acid: docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot (Scophthalmus maximus). Fish Physiol. Biochem. 14:139–151CrossRefGoogle Scholar
  10. Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R., and Crampton, V. O. 2003. Altered fatty acid composition in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J. Nutrition 133:2793–2801Google Scholar
  11. Bell, J. G., Henderson, R. J., Tocher, D. R., McGhee, F., and Sargent, J. R. 2004. Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 39:223–232PubMedCrossRefGoogle Scholar
  12. Blazer, V. S. 1992. Nutrition and disease resistance in fish. Ann. Rev. Fish Dis. 2:309–323CrossRefGoogle Scholar
  13. Bowden, L. A., Weitzel, B., Ashton, I. P., Secombs, C. J., Restall, C. J., Walton, T. J., and Rowley, A. F. 1994. Effect of dietary cholesterol on membrane properties and immune functions in rainbow trout. Biochem. Soc. Trans. 22:339SPubMedGoogle Scholar
  14. Bransden, M. P., Carter, C. G., and Nichols, P. D. 2003. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition, and disease resistance. Comp. Biochem. Physiol. 135B:611–625Google Scholar
  15. Brett, M. T. and Müller-Navarra, D. C. 1997. The role of highly unsaturated fatty acids in aquatic food web processes. Freshw. Biol. 38:483–499CrossRefGoogle Scholar
  16. Brett, M. T., Muller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L., and Goldman, C. R. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437CrossRefGoogle Scholar
  17. Brockerhoff, H. and Hoyle, R. J. 1963. On the structure of the depot fats of marine fish and mammals. Arch. Biochem. Biophys. 102:452–455PubMedCrossRefGoogle Scholar
  18. Brockerhoff, H., Hoyle, R. J., and Ronald, K. 1964. Retention of the fatty acid distribution pattern of a dietary triglyceride in animals. J. Biol. Chem. 239:735–739PubMedGoogle Scholar
  19. Brooks, S., Clark, G. T., Wright, S. M., Trueman, R. J., Postle, A. D., Cossins, A. R., and Maclean, N. M. 2002. Electrospray ionisation mass spectrometric analysis of lipid restructuring in the carp (Cyprinus carpio L.) during cold acclimation. J. Exp. Biol. 205:3989–3997PubMedGoogle Scholar
  20. Buda, C. I., Dey, I., Balogh, N., Horvath, L. I., Maderspach, K., Juhasz, M., Yeo, Y. K., and Farkas, T. 1994. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Natl. Acad. Sci. USA. 91:8234–8238PubMedCrossRefGoogle Scholar
  21. Caballero, M. J., Orbach, A., Rosenlund, G., Montero, D., Grisvold, M., and Izquierdo, M. S. 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhychus mykiss. Aquaculture 214:253–271CrossRefGoogle Scholar
  22. Coolbear, K. P., Berde, C. B., and Keough, K. M. W. 1983. Gel to liquid-cystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochem. 22:1466–1473CrossRefGoogle Scholar
  23. Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M., and Shattil, S. J. 1978. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: Production of red cells possessing more than two cholesterols per phospholipid. Biochem. 17:327–331CrossRefGoogle Scholar
  24. Dalsgaard, J., St. John, M., Kattner, G., Muller-Navarra, D., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340PubMedCrossRefGoogle Scholar
  25. Dey, I., Buda, C., Wiik, T., Halver, J. E., and Farkas, T. 1993. Molecular and structural composition of phospholipid membranes in lives of marine and freshwater fish in relation to temperature, Proc. Nat. Acad. Sci. 90:7498–7502PubMedCrossRefGoogle Scholar
  26. Eldho, N. V., Feller, S. E., Tristram-Nagle, S., Polozov, I. V., Gawrisch, K. 2003. Polyunsaturated docosahexaenoic vs docosapentaenoic acid-differences in lipid matrix properties from the loss of one double bond. J Am. Chem. Soc. 125:6409–6421PubMedCrossRefGoogle Scholar
  27. Estévez, A., McEvoy, L. A., Bell, J. G., and Sargent, J. R. 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180:321–343CrossRefGoogle Scholar
  28. Farkas, T., Kitajka, K., Fodor, E., Csengeri, I., Landes, E., Yeo, Y. K., Krasznai, Z., and Halver, J. E. 2000. Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA. 97:6362–6366PubMedCrossRefGoogle Scholar
  29. Feller, S. E., Gawrisch, K., MacKerrell, Jr., A. D. 2002. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 124:318–326PubMedCrossRefGoogle Scholar
  30. Ferguson, H. W., Morrison, D., Ostland, V. E., Lumsden, J., and Bryne, P. 1992. Responses of mucus-producing cells in gill disease of rainbow trout (Oncorhynchus mykiss). J. Comp. Pathol. 106:255–265PubMedCrossRefGoogle Scholar
  31. Fodor, E., Jones, R. H., Buda, C., Kitajka, K., Dey, I., and Farkas, T. 1995. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1125PubMedCrossRefGoogle Scholar
  32. Fracalossi, D. M. and Lovell, R. T. 1994. Dietary lipid sources influence responses of channel catfish (Ictalurus punctatus) to challenge with the pathogen Edwardsiella ictaluri. Aquaculture 119:287–298CrossRefGoogle Scholar
  33. Glencross, B. D., Hawkins, W. E., and Curnow, J. G. 2003. Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after growout on plant oil based diets. Aquacult. Nutr. 9:409–418CrossRefGoogle Scholar
  34. Hagve, T. A., Woldseth, B., Brox, J., Narce, M., and Poisson, J. P. 1998. Membrane fluidity and fatty acid metabolism in kidney cells from rats fed purified eicosapentaenoic acid or purified docosahexaenoic acid. Scand. J. Clin. Lab. Invest. 58:187–194PubMedCrossRefGoogle Scholar
  35. Haines, T. H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers. Prog. Lipid Res. 40:299–324PubMedCrossRefGoogle Scholar
  36. Hall, J. M., Parish, C. C., and Thompson, R. J. 2002. Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 202:201–203PubMedCrossRefGoogle Scholar
  37. Hashimoto, M., Hossain, S., and Shido, O. 2006. Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol. Cell. Biochem. 293:1–8PubMedCrossRefGoogle Scholar
  38. Hazel, J. R. 1993. Thermal Biology. In D.H. Evans [ed.], The Physiology of Fishes, CRC Press, Boca Raton, pp. 427–467Google Scholar
  39. Hazel, J. R. and Williams, E. E. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 26:281–347Google Scholar
  40. Hebert, C. E., Weseloh, D. V. C., Idrissi, A., Arts, M. T., O’Gorman, R., Gorman, O. T., Locke, B., Madenjian, C. P., and Roseman, E. F. 2008. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change. Ecology 89:891–897PubMedCrossRefGoogle Scholar
  41. Higgs, D. A. and Dong, F. M. 2000. Lipids and fatty acids. In R.R. Stickney [ed.], Aquaculture Encyclopedia. Wiley, New York, pp. 476–496Google Scholar
  42. Holey, M. E., Elliot, R. F., Marcquenski, S. V., Hnath, J. G., and Smith, K. D. 1998. Chinook salmon epizootics in Lake Michigan: possible contributing factors and management implications. J. Aquat. Animal Health 10:201–210CrossRefGoogle Scholar
  43. Hossain, M. S., Hashimoto, M., Gamoh, S., and Masumura, S. 1999. Association of age-related decrease in platelet membrane fluidity with platelet lipid peroxide. Life Sci. 64:135–143PubMedCrossRefGoogle Scholar
  44. Huber, T., Rajamoorthi, K., Kurze, V. F., Beyer, K., Brown, M. F. 2002. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulations. J. Am. Chem. Soc. 124:298–309PubMedCrossRefGoogle Scholar
  45. Hull, M. C., Cambrea, L. R., Hovis, J. S. 2005. Infrared spectroscopy of fluid lipid bilayers. Anal. Chem. 77:6096–6099PubMedCrossRefGoogle Scholar
  46. Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., and Rosenlund, G. 2003. Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquaculture Nutr. 9:397–407.CrossRefGoogle Scholar
  47. Jobling, M. 2003. Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash-out or dilution? Test of a dilution model and its application. Aquaculture Res. 34:1215–1221CrossRefGoogle Scholar
  48. Jobling, M. 2004a. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562CrossRefGoogle Scholar
  49. Jobling, M. 2004b. “Finishing” feeds for carnivorous fish and the fatty acid dilution model. Aquaculture Res. 35:706–709CrossRefGoogle Scholar
  50. Kitajka, K., Buda, C. S., Fodor, E., Halver, J. E., and Farkas, T. 1996. Involvement of phospholipid molecular species in controlling structural order of vertebrate brain synaptic membranes during thermal evolution. Lipids 31:1045–1050PubMedCrossRefGoogle Scholar
  51. Kelly, A. M. and Kohler, C. C. 1999. Cold tolerance and fatty acid composition of striped bass, white bass, and their hybrids. N. Am. J. Aquaculture 61:278–285CrossRefGoogle Scholar
  52. Lands, W. E. M. 1992. Biochemistry and physiology of n-3 fatty acids. Fed. Am. Soc. Exp. Biol. 6:2530–2536PubMedGoogle Scholar
  53. Lane, R. L., Trushenski, J. T., and Kohler, C. C. 2006. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops x M. saxatilis following change in dietary lipid source. Lipids 41:1029–1038PubMedCrossRefGoogle Scholar
  54. Lewis, H. A. and Kohler, C. C. 2008. Corn gluten meal partially replaces dietary fish meal without compromising growth or the fatty acid composition of sunshine bass. N. Am. J. Aquaculture 70:50–60CrossRefGoogle Scholar
  55. Li, M. H., Wise, D. J., Johnson, M. R., and Robinson, E. H. 1994. Dietary menhaden oil reduced resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri. Aquaculture 128:335–344CrossRefGoogle Scholar
  56. Lin, Y. -H. and Shiau, S. -Y. 2007. Effect of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutr. 13:137–144CrossRefGoogle Scholar
  57. Lodemel, J. B., Mayhew, T. M., Myklebust, R., Olsen, R. E., Espelid, S., and Ringo, E. 2001. Effect of three dietary oils on disease susceptibility in arctic charr (Salvelinus alpinis L.) during cohabitant challenge with Aeromonus salmonicida ssp. salmonicida. Aquaculture Res. 32:935–945CrossRefGoogle Scholar
  58. Los, D. A. and Murata, N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta 1666:142–157PubMedGoogle Scholar
  59. Lund, E. K., Harvey, L. J., Ladha, S., Clark, D. C., and Johnson, I. T. 1999. Effects of dietary fish oil supplementation on the phospholipid composition and fluidity of cell membranes from human volunteers. Ann. Nutr. Metab. 43:290–300PubMedCrossRefGoogle Scholar
  60. Madenjian, C. P., Höök, T. O., Rutherford, E. S., Mason, D. M., Croley II, T. E., Szalai, E. B., and Bence, J. R. 2005. Recruitment variability of alewives in Lake Michigan. Trans. Am. Fish Soc. 134:218–230CrossRefGoogle Scholar
  61. Manning, B. B., Li, M. H., and Robinson, E. H. 2007. Feeding channel catfish, Ictalurus punctatus, diets amended with refined marine fish oil elevates omega-3 highly unsaturated fatty acids in fillets. J. World Aquaculture Soc. 38:49–58CrossRefGoogle Scholar
  62. Masuda, R., Takeuchi, T., Tsukamoto, K., Sato, H., Shimizu, K., and Imaizumi, K. 1999. Incorporation of dietary docosahexaenoic acid into the central nervous system of the yellowtail Seriola quinqueradiata. Brain Behav. Evol. 53:173–179PubMedCrossRefGoogle Scholar
  63. Moffat, C. F. 1995. Fish oil triglycerides: a wealth of variation. Lipid Technol. 7:125–129Google Scholar
  64. Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J., and Izquierdo, M. S. 2003. Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture 225:353–370CrossRefGoogle Scholar
  65. Müller-Navarra, D. C., Brett, M. T., Park, S., Chandra, S., Ballantyne, A. P., Zorita, E., and Goldman, C. R. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72PubMedCrossRefGoogle Scholar
  66. Nalepa, T. F., Fanslow, D. L., Foley, A. J. III, Lang, G. A., Eadie, B. J., and Quigley, M. A. 2006. Continued disappearance of the benthic amphipod Diporeia spp. in Lake Michigan: is there evidence for food limitation? Can. J. Fish Aquat. Sci. 63:872–890CrossRefGoogle Scholar
  67. Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J. P. 2002. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 41:66–97PubMedCrossRefGoogle Scholar
  68. O’Neal, C. C. and Kohler, C. C. 2008. Effects of replacing menhaden oil with catfish oil on the fatty acid composition of juvenile channel catfish, Ictalurus punctatus. J. World Aquaculture Soc. 39:62–71CrossRefGoogle Scholar
  69. Regost, C., Arzel, J., Robin, J., Rosenlund, G., and Kaushik, S. J. 2003. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima), 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217:465–482CrossRefGoogle Scholar
  70. Robin, J. H., Regost, C., Arzel, J., and Kaushik, S. J. 2003. Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture 225:283–293CrossRefGoogle Scholar
  71. Rowley, A. F., Knight, J., Lloyd-Evans, P., Holland, J. W., and Vickers, P. J. 1995. Eicosanoids and their role in immune modulation in fish—a brief overview. Fish and Shellfish Immunol. 5:549–567CrossRefGoogle Scholar
  72. Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., and Tocher, D. R. 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11:183–198CrossRefGoogle Scholar
  73. Sargent, J. R., Tocher, D. R., and Bell, J. G. 2002. The lipids. In J.E. Halver R.W. Hardy [eds.] Fish nutrition, 3rd edition. Academic Press, San Diego, pp. 181–257Google Scholar
  74. Schlechtriem, C., Arts, M. T., and Zellmer, I. D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids 41:397–400PubMedCrossRefGoogle Scholar
  75. Shearer, K. D. 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119:63–88CrossRefGoogle Scholar
  76. Sheldon, Jr., W. M. and Blazer, V. S. 1991. Influence of dietary lipid and temperature on bactericidal activity of channel catfish macrophages. J. Aquat. Animal Health 3:87–93CrossRefGoogle Scholar
  77. Sinensky, M. 1974. Homoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:522–525CrossRefGoogle Scholar
  78. Singer, S. J. and Nicholson, G. L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  79. Stillwell, W. and Wassall, S. R. 2003. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids. 126:1–27PubMedCrossRefGoogle Scholar
  80. Stubbs, C. D. and Smith, A. D. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to fluidity and function. Biochim. Biophys. Acta. 779:89–137PubMedGoogle Scholar
  81. Snyder, R. J. and Hennessey, T. M. 2003. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish Physiol. Biochem. 29:117–126CrossRefGoogle Scholar
  82. Tocher, D. R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci. 11:107–184CrossRefGoogle Scholar
  83. Torstensen, B. E., Froyland, L., Ornsrud, R., and Lie, O. 2004. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem. 87:567–580CrossRefGoogle Scholar
  84. Tort, L., Balasch, J. C., and MacKenzie, S. 2004. Fish health challenge after stress. Indicators of immunocompetence. Contrib. Sci. 2:443–454Google Scholar
  85. Trueman, R. J., Tiku, P. E., Caddick, M. X., and Cossins, A. R. 2000. Thermal thresholds of lipid restructuring and ▵9-desaturase expression in the liver of carp (Cyprinus carpio). J. Exp. Biol. 203:641–650PubMedGoogle Scholar
  86. Trushenski, J. T., Kasper, C. S., and Kohler, C. C. 2006. Challenges and opportunities in finfish nutrition. N. Am. J. Aquaculture 68:122–140CrossRefGoogle Scholar
  87. Trushenski, J. T. and Kohler, C. C. 2008. Influence of stress, exertion, and dietary natural source vitamen E on prostaglandin synthesis, hematology, and tissue fatty acid composition of sunshine bass. N. Am. J. Aquaculture 70:251–265CrossRefGoogle Scholar
  88. Ulbricht, T. L. V. and Southgate, D. A. T. 1991. Coronary heart disease: seven dietary factors. Lancet 338:985–992PubMedCrossRefGoogle Scholar
  89. Wassall, S. R., Brzustowicz, M. R., Shaikh, S. R., Cherezov, V., Caffrey, M., and Stillwell, W. 2004. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88PubMedGoogle Scholar
  90. Wonnacott, E. J., Lane, R. L., and Kohler, C. C. 2004. Influence of dietary replacement of menhaden oil with canola oil on fatty acid composition of sunshine bass. N. Am. J. Aquaculture 66:243–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ecosystems Management Research DivisionNational Water Research Institute - Environment CanadaBurlingtonCanada
  2. 2.Fisheries and Illinois Aquaculture CenterSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations