Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

  • Margarita Garriga
  • Teresa Aymerich
Part of the Food Microbiology and Food Safety book series (FMFS)


The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

HPP of foods was first reported by Hite (1899). After a treatment of milk at 670 MPa for 10 min a 5–6 log-cycle reduction in total counts was achieved, and meat treated at 530 MPa for 1 h showed insignificant microbial growth after 3 weeks. In 1914, Bridgman reported egg...


Meat Product High Hydrostatic Pressure Refrigerate Storage Fermented Sausage High Hydrostatic Pressure Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe, F. (2007). Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Bioscience, Biotechnology, and Biochemistry, 71, 2347–2357.CrossRefGoogle Scholar
  2. Andrés, A. I., Møller, J. K., Adamsen, C. E., & Skibsted, L. H. (2004). High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and colour. European Food Research and Technology, 1–13.Google Scholar
  3. Andrés, A. I., Adamsen, C. E., Moller, J. K. S., Ruiz, J., & Skibsted, L. H. (2006). High-pressure treatment of dry-cured Iberian ham. Effect on colour and oxidative stability during chill storage packed in modified atmosphere. European Food Research and Technology, 222, 486–491.CrossRefGoogle Scholar
  4. Arnau, J., Gou, P., Monfort, J. M., Sanz, P. D., Molina-García, A. D., Otero, L., et al. (2006). Procedimiento para la protección y estabilización del color de carnes y productos elaborados de carne, frescos, marinados o parcialmente deshidratados, tratados por alta presión. ES20060000735.Google Scholar
  5. Aymerich, M. T., Jofré, A., Garriga, M., & Hugas, M. (2005). Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. Journal of Food Protection, 68, 173–177.Google Scholar
  6. Baron, A., Bayer, O., Butz, P., Geisel, B., Gupta, B., Oltersdorf, U., et al. (1999). Consumer perception of high pressure processing: A three country survey. Proceedings of European Conference on Emerging Food Science and Technology (p. 18), Tampere, Finland.Google Scholar
  7. Bragagnolo, N., Danielsen, B., & Skibsted, L. H. (2007). Rosemary as antioxidant in pressure processed chicken during subsequent cooking as evaluated by electron spin resonance spectroscopy. Innovative Food Science & Emerging Technologies, 8, 24–29.CrossRefGoogle Scholar
  8. Bridgman, P. W. (1914). The coagulation of albumen by pressure. Journal of Biological Chemistry, 19, 511–512.Google Scholar
  9. Cardello, A. V., Schutz, H. G., & Lesher, L. L. (2007). Consumer perceptions of foods processed by innovative and emerging technologies: A conjoint analytic study. Innovative Food Science & Emerging Technologies, 8, 73–83.CrossRefGoogle Scholar
  10. Carlez, A., Rosec, J. P., Richard, N., & Cheftel, J. C. (1994). Bacterial growth during chilled storage of pressure-treated minced meat. Lebensmittel-Wissenschaft und-Technologie, 27, 48–54.CrossRefGoogle Scholar
  11. Carlez, A., Veciana-Nogués, M. T., & Cheftel, J. C. (1995). Changes in colour and myoglobin of minced meat due to high pressure processing. Lebensmittel-Wissenschaft und-Technologie, 28, 528–538.CrossRefGoogle Scholar
  12. Carpi, G., Squarcina, N., Gola, S., Rovere, P., Pedrielli, R., & Bergamaschi, M. (1999). Application of high pressure treatment to prolong the refrigerated shelf-life of sliced cooked ham. Industria Conserve, 74, 327–339.Google Scholar
  13. Cava, R., Tárrega, R., Ramírez, M. R., Mingoarranz, F. J., & Carrasco, A. (2005). Effect of irradiation on colour and lipid oxidation of dry-cured hams from free-range reared and intensively reared pigs. Innovative Food Science & Emerging Technologies, 6, 135–141.CrossRefGoogle Scholar
  14. Chapman, B., Winley, E., & Fong, A. S. W. (2007). Ascospore inactivation and germination by high pressure processing is affected by ascospore age. Innovative Food Science & Emerging Technologies, 8, 531–534.CrossRefGoogle Scholar
  15. Cheftel, J. C. (1995). Review: High-pressure, microbial inactivation and food preservation. Food Science and Technology International, 1, 75–90.CrossRefGoogle Scholar
  16. Cheftel, J. C., & Culioli, J. (1997). Effects of high pressure on meat: A review. Meat Science, 46, 211–236.CrossRefGoogle Scholar
  17. Chen, H., & Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2, 81–100.Google Scholar
  18. Chen, H. Q., Guan, D. S., & Hoover, D. G. (2006). Sensitivities of foodborne pathogens to pressure changes. Journal of Food Protection, 69, 130–136.Google Scholar
  19. Chung, Y. K., Vurma, M., Turek, E. J., Chism, G. W., & Yousef, A. E. (2005). Inactivation of barotolerant Listeria monocytogenes in sausage by combination of high-pressure processing and food-grade additives. Journal of Food Protection, 68, 744–750.Google Scholar
  20. Díez, A. M., Santos, E. M., Jaime, I., & Rovira, J. (2008). Application of organic acid salts and high-pressure treatments to improve the preservation of blood sausage. Food Microbiology, 25, 154–161.CrossRefGoogle Scholar
  21. Diez, A., Urso, R., & Rantsiou, K. (2008). Spoilage of blood sausages morcilla de Burgos treated with high hydrostatic pressure. International Journal of Food Microbiology, 123, 246–253.CrossRefGoogle Scholar
  22. European Parliament and the council of the European Union. (2004). Regulation (EC) No 1935/2004 of October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Official Journal L, 338, 4–17.Google Scholar
  23. Farkas, D. F., & Hoover, D. G. (2000). High pressure processing. Journal of Food Science, 65(suppl.), 47–64.Google Scholar
  24. Farkas, J., Hajos, G., Szerdahelyi, E., Andrassy, E., Krommer, J., & Meszaros, L. (2002). Protein changes in high pressure pasteurized raw sausage batter. Proceedings of 48th International Congres of Meat Science and Technology (pp. 180–181), Rome, Italy.Google Scholar
  25. Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.CrossRefGoogle Scholar
  26. García, M. T., Martínez, M., Lucas, R., Ben, N., Pérez, R., & Gálvez, A. (2004). Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 90, 161–170.CrossRefGoogle Scholar
  27. Garriga, M., Aymerich, M. T., Costa, S., Monfort, J. M., & Hugas, M. (2002). Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19, 509–518.CrossRefGoogle Scholar
  28. Garriga, M., Grèbol, N., Aymerich, M. T., Monfort, J. M., & Hugas, M. (2004). Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, 5, 451–457.CrossRefGoogle Scholar
  29. Garriga, M., Marcos, B., Martín, B., Veciana-Nogués, M. T., Bover-Cid, S., Hugas, M., et al. (2005). Starter cultures and high pressure processing to improve the hygiene and safety of slightly fermented sausages. Journal of Food Protection, 68, 2341–2348.Google Scholar
  30. Gola, S., Mutti, P., Manganelli, E., Squarcina, N., & Rovere, P. (2000). Behaviour of E.coli O157:H7 strains in model system and in raw meat by HPP: Microbial and technological aspects. High Pressure Research, 19, 481–487.CrossRefGoogle Scholar
  31. Han, J. H. (2005). Antimicrobial packaging systems. In J. H. Han (Ed), Innovations in food packaging (pp. 80–107). London: Elsevier Academic Press.CrossRefGoogle Scholar
  32. Hartmann, C., Mathmann, K., & Delgado, A. (2006). Mechanical stresses in cellular structures under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 7, 1–12.CrossRefGoogle Scholar
  33. Hayman, M. M., Baxter, I., O'Riordan, P. J., & Stewart, C. M. (2004). Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats. Journal of Food Protection, 67, 1709–1718.Google Scholar
  34. Hite, B. H. (1899). The effects of pressure in the preservation of milk. Bulletin of the West Virginia University Agricultural Experimental Station Morgantown, 58, 15–35.Google Scholar
  35. Hogan, E., Kelly, A. L., & Sun, D. W. (2005). High pressure processing of foods: an overview. In S. Da-Wen (Ed.), Emerging technologies for food processing (pp. 3–31). London, UK: Academic Press.CrossRefGoogle Scholar
  36. Homma, N., Ikeuchi, Y., & Suzuki, A. (1994). Effects of high-pressure treatment on the proteolytic-enzymes in meat. Meat Science, 38, 219–228.CrossRefGoogle Scholar
  37. Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F., & Knorr, D. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43, 99–107.Google Scholar
  38. Hugas, M., Garriga, M., & Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Science, 62, 359–371.CrossRefGoogle Scholar
  39. Ikeuchi, Y., Tanji, H., Kim, K., & Suzuki, A. (1992). Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. Journal of Agricultural and Food Chemistry, 40, 1756–1761.CrossRefGoogle Scholar
  40. Jofré, A., Aymerich, T., & Garriga, M. (2008). Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control, 19, 634–638.CrossRefGoogle Scholar
  41. Jofré, A., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). Application of enterocins A and B, sakacin K and nisin to extend the safe shelf-life of pressurized ready-to-eat meat products. European Food Research and Technology. DOI 10.1007/s00217-008-0913-z.Google Scholar
  42. Jofré, A., Garriga, M., & Aymerich, T. (2007). Inhibition of Listeria monocytogenes in cooked ham through active packaging with natural antimicrobials and high pressure processing. Journal of Food Protection, 70, 2498–2502.Google Scholar
  43. Jofré, A., Garriga, M., & Aymerich, T. (2008). Inhibition of Salmonella sp. Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Science, 78, 53–59.CrossRefGoogle Scholar
  44. Jung, D. S., De Lamballerie-Anton, M., & Taylor, R. G. (2000). High-pressure effects on lysosome integrity and lysosomal enzyme activity in bovine muscle. Journal of Agricultural and Food Chemistry, 48, 2467–2471.CrossRefGoogle Scholar
  45. Jung, S., De Lamballerie, M., & Ghoul, M. (2000). Modifications of ultrastructure and myofibrillar proteins of post-rigor beef treated by high pressure. Lebensmittel-Wissenschaft und-Technologie, 33, 313–319.CrossRefGoogle Scholar
  46. Kalchayanand, N., Sikes, A., Dunne, C. P., & Ray, B. (1998a). Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiology, 15, 207–214.CrossRefGoogle Scholar
  47. Kalchayanand, N., Sikes, A., Dunne, C. P., & Ray, B. (1998b). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. Journal of Food Protection, 61, 425–431.Google Scholar
  48. Karlowski, K., Windyga, B., & Fonberg-Broczek, M. (2002). Influence of UHP treatment on quality of ham. High Pressure Effects in Chemistry, Biology and Materials Science, 208, 73–76.Google Scholar
  49. Krockel, L., & Muller, W. D. (2002). Inactivation of bacteria on vacuum-packaged sliced Bologna-type sausage by high hydrostatic pressure. Fleischwirtshaft, 82, 121–124.Google Scholar
  50. Latorre-Moratalla, M. L., Bover-Cid, S., Aymerich, T., Marcos, B., Vidal-Carou, M. C., & Garriga, M. (2007). Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture. Meat Science, 75, 460–469.CrossRefGoogle Scholar
  51. Ledward, D. A. (1998). High pressure processing of meat and fish. In K. Autio (Ed.), Fresh novel foods by high pressure. Helsinki, Finland: VTT Biotechnology and Food Research.Google Scholar
  52. Lee, E. J., Kim, Y. J., & Lee, N. H. (2007). Differences in properties of myofibrillar proteins from bovine semitendinosus muscle after hydrostatic pressure or heat treatment. Journal of the Science of Food and Agriculture, 87, 40–46.CrossRefGoogle Scholar
  53. Leistner, L., & Gorris, L. G. M. (1995). Food preservation by hurdle technology. Trends in Food Science and Technology, 6, 42–46.CrossRefGoogle Scholar
  54. Lindsay, D. S., Collins, M. V., Holliman, D., Flick, G. J., & Dubey, J. P. (2006). Effects of high-pressure processing on Toxoplasma gondii tissue cysts in ground pork. Journal of Parasitology, 92, 195–196.CrossRefGoogle Scholar
  55. López-Caballero, M. E., Carballo, J., & Jiménez-Colmenero, F. (1999). Microbiological changes in pressurized, prepackaged sliced cooked ham. Journal of Food Protection, 62, 1411–1415.Google Scholar
  56. López-Caballero, M. E., Carballo, J., Solas, M. T., & Jiménez-Colmenero, F. (2002). Responses of Pseudomonas fluorescens to combined high pressure/termperature treatments. European Food Research and Technology, 214, 511–515.CrossRefGoogle Scholar
  57. Ludwig, H., van Almsick, G., & Schreck, C. (2002). The effect of high hydrostatic pressure on the survival of microorganisms. In Y. Taniguchi, H. E. Stanley, & H. Ludwig (Eds.), Biological systems under extreme conditions. Berlin: Springer.Google Scholar
  58. Luscher, C., Balasa, A., Frohling, A., Ananta, E., & Knorr, D. (2004). Effect of high-presure-induced Ice I-to-Ice III Phase Transitions on inactivation of listeria innocua in frozen suspension. Applied and Environmental Microbiology, 70, 4021–4029.CrossRefGoogle Scholar
  59. Luscher, C., Sunderhoff, J. K., Urrutia Benet, G., & Knorr, D. (2005). Pasteurization of meat in frozen conditions by high pressure. Proceedings of INTRADFOOD 2005 innovation in traditional foods (pp. 1379–1382), Valencia, Spain.Google Scholar
  60. Ma, H. J., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68, 347–355.CrossRefGoogle Scholar
  61. Macfarlane, J. J. (1973). Pre-rigor pressurization of muscle: Effects on pH, shear value and taste panel assessment. Journal of Food Science, 38, 294–298.CrossRefGoogle Scholar
  62. Macfarlane, J. J. (1985). High pressure technology and meat quality. In R. Lawrie (Ed.), Developements in meat science (pp. 155–184). London: Elsevier Applied Publishers.Google Scholar
  63. Marcos, B., Aymerich, T., & Garriga, M. (2005). Evaluation of high pressure processing as an additional hurdle to control Listeria monocytogenes and Salmonella enterica in low-acid fermented sausages. Journal of Food Science, 70, 339–344.CrossRefGoogle Scholar
  64. Marcos, B., Aymerich, T., Guardia, M. D., & Garriga, M. (2007). Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, 76, 46–53.CrossRefGoogle Scholar
  65. Marcos, B., Jofré, A., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control, 19, 76–81.CrossRefGoogle Scholar
  66. Mariutti, L. R. B., Orlien, V., & Bragagnolo, N. (2008). Effect of sage and garlic on lipid oxidation in high-pressure processed chicken meat. European Food Research and Technology, 227, 337–344.CrossRefGoogle Scholar
  67. Moerman, F. (2005). High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork Marengo, a low acidic particulate food product. Meat Science, 69, 225–232.CrossRefGoogle Scholar
  68. Mor-Mur, M., & Yuste, J. (2003). High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis. Meat Science, 65, 1187–1191.CrossRefGoogle Scholar
  69. Morales, P., Calzada, J., & Avila, M. (2008). Inactivation of Escherichia coli O157: H7 in ground beef by single-cycle and multiple cycle high-pressure treatments. Journal of Food Protection, 71, 811–815.Google Scholar
  70. Morales, P., Calzada, J., & Nuñez, M. (2006). Effect of high-pressure treatment on the survival of Listeria monocytogenes Scott A in sliced vacuum-packaged iberian and serrano cured hams. Journal of Food Protection, 69, 2539–2543.Google Scholar
  71. Mozhaev, V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High pressure effects on protein structure and function. Proteins, Structure, Function and Genetics, 24, 81–91.CrossRefGoogle Scholar
  72. Otero, L. M. (1999). Caracterización del proceso de congelación por cambio brusco de presión en alimentos. Thesis. Universidad Politécnica de Madrid.Google Scholar
  73. Patterson, M. F. (2005). Microbiology of pressure-treated foods. Journal of Applied Microbiology, 98, 1400–1409.CrossRefGoogle Scholar
  74. Patterson, M. F., Quinn, M., Simpson, R., & Gilmour, A. (1995). Sensitivity of vegetative pathogens to high hydrostatic-pressure treatment in phosphate-buffered saline and foods. Journal of Food Protection, 58, 524–529.Google Scholar
  75. Pietrzak, D., Fonberg-Broczek, M., & Mucka, A. (2007). Effects of high pressure treatment on the quality of cooked pork ham prepared with different levels of curing ingredients. High Pressure Research, 27, 27–31.CrossRefGoogle Scholar
  76. Pittia, P., Wilde, P. J., Husband, F. A., & Clark, D. C. (1996). Functional and structural properties of beta-lactoglobulin as affected by high pressure treatment. Journal of Food Science, 61, 1123–1128.CrossRefGoogle Scholar
  77. Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47, 69–112.CrossRefGoogle Scholar
  78. Rubio, B., Martínez, B., García-Gachán, M. D., Rovira, J., & Jaime, I. (2007a). Effect of high pressure preservation on the quality of dry cured beef "Cecina de Leon". Innovative Food Science and Emerging Technologies, 8, 102–110.CrossRefGoogle Scholar
  79. Rubio, B., Martínez, B., García-Cachán, M. D., Rovira, J., & Jaime, I. (2007b). The effects of high pressure treatment and of storage periods on the quality of vacuum-packed "salchichon" made of raw material enriched in monounsaturated and polyunsaturated fatty acids. Innovative Food Science and Emerging Technologies, 8, 180–187.CrossRefGoogle Scholar
  80. Ruiz-Capillas, C., Carballo, J., & Jiménez-Colmenero, F. (2007). Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage. Food Chemistry, 104, 202–208.CrossRefGoogle Scholar
  81. Ruiz-Capillas, C., & Jiménez-Colmenero, F. (2004). Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. European Food Research and Technology, 218, 237–241.CrossRefGoogle Scholar
  82. Ruiz-Capillas, C., Jiménez-Colmenero, F., Carrascosa, A. V., & Muñoz, R. (2007). Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Science, 77, 365–371.CrossRefGoogle Scholar
  83. Saccani, G., Parolari, G., Tanzi, E., & Rabbuti, S. (2004). Sensory and microbiological properties of dried hams treated with high hydrostatic pressure. Proceedings of 50th international congress of meat science and technology (pp. 726–729), Helsinki, Finland.Google Scholar
  84. Sanz, P. D. (2005). Freezing and thawing of foods under pressure. Boca Raton: CRC Press.Google Scholar
  85. Schreck, C., Layh-Schmidt, G., & Ludwig, H. (1999). Inactivation of Mycoplasma Pneumoniae by high hydrostatic pressure. Pharmaceutical Industry, 61, 759–762.Google Scholar
  86. Serra, X., Grèbol, N., Guàrdia, M. D., Guerrero, L., Gou, P., Masoliver, P., et al. (2007). High pressure applied to frozen ham at different process stages. 2. Effect on the sensory attributes and on the colour characteristics of dry-cured ham. Meat Science, 75, 21–28.CrossRefGoogle Scholar
  87. Serra, X., Sárraga, C., Grèbol, N., Guàrdia, M. D., Guerrero, L., Gou, P., et al. (2007). High pressure applied to frozen ham at different process stages. 1. Effect on the final physicochemical parameters and on the antioxidant and proteolytic enzyme activities of dry-cured ham. Meat Science, 75, 12–20.CrossRefGoogle Scholar
  88. Shigehisa, T., Ohmori, A., Saito, S., Taji, S., & Hayashi, R. (1991). Effects of high pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. International Journal of Food Microbiology, 12, 207–216.CrossRefGoogle Scholar
  89. Simpson, R., & Gilmour, A. (1997). The resistance of Listeria monocytogenes to high hydrostatic pressure in foods. Food Microbiology, 14, 567–573.CrossRefGoogle Scholar
  90. Smelt, J. P. P. M., & Hellemons, C. (1998). High pressure treatment in relation to quantitative risk assessment 27–38. In K. Autio (ed.), Proceedings of VTT Symposium Fresh Novel Foods by High Pressure.Google Scholar
  91. Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, 9, 152–158.CrossRefGoogle Scholar
  92. Smid, E. J., & Gorris, G. M. (2007). Natural antimicrobials for food preservation. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed.). Boca Raton (USA): CRC Press.Google Scholar
  93. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.CrossRefGoogle Scholar
  94. Suzuki, A., Kim, K., Homma, N., Ikeuchi, Y., & Saito, M. (1992). Acceleration of meat conditioning by high-pressure treatment. Montrouge: Colloques INSERM/John Libbey Eurotext Ltd.Google Scholar
  95. Suzuki, A., Kim, K., Tanji, H., Nishiumi, T., & Ikeuchi, Y. (2006). Application of high hydrostatic pressure to meat and meat processing. In L. M. L. Nollet & F. Toldrá (Eds.), Advanced technologies for meat processing (pp. 193–218). Boca Raton, FL: CRC Press.Google Scholar
  96. Tanzi, E., Saccani, G., Barbuti, S., Grisenti, M. S., Lori, D., Bolzoni, S., et al. (2004). High-pressure treatment of raw ham. Sanitation and impact to quality. Industria Conserve, 79, 37–50.Google Scholar
  97. Tedford, L. A., Kelly, S. M., Price, N., & Schaschke, C. J. (1999). Interactive effects of pressure, temperature and time on the molecular structure of b-lactoglobulin. Journal of Food Science, 64, 396.CrossRefGoogle Scholar
  98. Téllez, S. J., Ramírez, J. A., Pérez, C., Vázquez, M., & Simal, J. (2001). Aplicación de la alta pressión hidrostática en la conservación de los alimentos. Ciencia y Tecnología Alimentaria, 3, 66–80.Google Scholar
  99. Tewari, G., Jayas, D. S., & Holley, R. A. (1999). High pressure processing of foods: An overview. Sciences des Aliments, 19, 619–661.Google Scholar
  100. Torres, A. J., & Velázquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67, 95–112.CrossRefGoogle Scholar
  101. Vermeiren, L., Devlieghere, F., & Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Additives and Contaminants, 19, 163–171.Google Scholar
  102. Wuytack, E. Y., Boven, S., & Michiels, C. W. (1998). Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology, 64, 3220–3224.Google Scholar
  103. Yuste, J., Pla, R., Capellas, M., Sendra, E., Beltran, E., & Mor-Mur, M. (2001). Oscillatory high pressure processing applied to mechanically recovered poultry meat for bacterial inactivation. Journal of Food Science, 66, 482–484.CrossRefGoogle Scholar
  104. Yuste, J., Pla, R., & Mor-Mur, M. (2000). Salmonella enteritidis and aerobic mesophiles in inoculated poultry sausages manufactured with high-pressure processing. Letters in Applied Microbiology, 31, 374–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IRTA-Food Technology, Finca Camps i Armet s/nMonellsSpain

Personalised recommendations