A Primal-Dual Slack Approach to Warmstarting Interior-Point Methods for Linear Programming

  • Alexander Engau
  • Miguel F. Anjos
  • Anthony Vannelli
Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 47)

Abstract

Despite the many advantages of interior-point algorithms over active-set methods for linear programming, one of their practical limitations is the remaining challenge to efficiently solve several related problems by an effective warmstarting strategy. Similar to earlier approaches that modify the initial problem by shifting the boundary of its feasible region, the contribution of this paper is a new but relatively simpler scheme which uses a single set of new slacks to relax the nonnegativity constraints of the original primal-dual variables. Preliminary computational results indicate that this simplified approach yields similar improvements over cold starts as achieved by previous methods.

Keywords:

interior-point methods — linear programming — warmstarting 

References

  1. Anjos MF, Burer S (2007) On handling free variables in interior-point methods for conic linear optimization. SIAM J Optim 18(4):1310–1325MathSciNetMATHCrossRefGoogle Scholar
  2. Benson HY, Shanno DF (2007) An exact primal-dual penalty method approach to warmstarting interior-point methods for linear programming. Comput Optim Appl 38(3):371–399MathSciNetMATHCrossRefGoogle Scholar
  3. El-Bakry AS, Tapia RA, Zhang Y (1994) A study of indicators for identifying zero variables in interior-point methods. SIAM Rev 36(1):45–72MathSciNetMATHCrossRefGoogle Scholar
  4. Elhedhli S, Goffin JL (2004) The integration of an interior-point cutting plane method within a branch-and-price algorithm. Math Program 100(2, Ser. A):267–294MathSciNetMATHCrossRefGoogle Scholar
  5. Facchinei F, Fischer A, Kanzow C (2000) On the identification of zero variables in an interior-point framework. SIAM J Optim 10(4):1058–1078MathSciNetMATHCrossRefGoogle Scholar
  6. Freund RM (1991a) A potential-function reduction algorithm for solving a linear program directly from an infeasible “warm start”. Math Programming 52(3, Ser. B):441–466MathSciNetMATHCrossRefGoogle Scholar
  7. Freund RM (1991b) Theoretical efficiency of a shifted-barrier-function algorithm for linear programming. Linear Algebra Appl 152:19–41MathSciNetMATHCrossRefGoogle Scholar
  8. Freund RM (1996) An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution. Ann Oper Res 62:29–57MathSciNetMATHCrossRefGoogle Scholar
  9. Gondzio J (1998) Warm start of the primal-dual method applied in the cutting-plane scheme. Math Programming 83(1, Ser. A):125–143MathSciNetMATHCrossRefGoogle Scholar
  10. Gondzio J, Grothey A (2003) Reoptimization with the primal-dual interior point method. SIAM J Optim 13(3):842–864MathSciNetMATHCrossRefGoogle Scholar
  11. Gondzio J, Grothey A (2008) A new unblocking technique to warmstart interior point methods based on sensitivity analysis. SIAM J Optim 19(3):1184–1210MathSciNetMATHCrossRefGoogle Scholar
  12. Gondzio J, Vial JP (1999) Warm start and ε-subgradients in a cutting plane scheme for block-angular linear programs. Comput Optim Appl 14(1):17–36MathSciNetMATHCrossRefGoogle Scholar
  13. John E, Yildirim EA (2008) Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41(2):151–183MathSciNetMATHCrossRefGoogle Scholar
  14. Karmarkar N (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4(4):373–395MathSciNetMATHCrossRefGoogle Scholar
  15. Mitchell JE (1994) An interior point column generation method for linear programming using shifted barriers. SIAM J Optim 4(2):423–440MathSciNetMATHCrossRefGoogle Scholar
  16. Mitchell JE (2000) Computational experience with an interior point cutting plane algorithm. SIAM J Optim 10(4):1212–1227MathSciNetMATHCrossRefGoogle Scholar
  17. Mitchell JE, Borchers B (1996) Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Ann Oper Res 62:253–276MathSciNetMATHCrossRefGoogle Scholar
  18. Mitchell JE, Todd MJ (1992) Solving combinatorial optimization problems using Karmarkar's algorithm. Math Programming 56(3, Ser. A):245–284MathSciNetMATHCrossRefGoogle Scholar
  19. Mizuno S (1994) Polynomiality of infeasible-interior-point algorithms for linear programming. Math Programming 67(1, Ser. A):109–119MathSciNetMATHCrossRefGoogle Scholar
  20. Oberlin C, Wright SJ (2006) Active set identification in nonlinear programming. SIAM J Optim 17(2):577–605MathSciNetMATHCrossRefGoogle Scholar
  21. Polyak R (1992) Modified barrier functions (theory and methods). Math Programming 54(2, Ser. A):177–222MathSciNetMATHCrossRefGoogle Scholar
  22. Roos C, Terlaky T, Vial JP (2006) Interior point methods for linear optimization. Springer, New YorkMATHGoogle Scholar
  23. Toh K C, To dd MJ, Tütüncü RH (1999) SDPT3 — a MATLAB software package for semidefinite programming, version 1.3. Optim Methods Softw 11/12(1—4):545–581CrossRefGoogle Scholar
  24. Vanderbei RJ (1999) LOQO: an interior point code for quadratic programming. Optim Methods Softw 11/12(1–4):451–484MathSciNetCrossRefGoogle Scholar
  25. Wright SJ (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PAMATHCrossRefGoogle Scholar
  26. Yildirim EA, Wright SJ (2002) Warm-start strategies in interior-point methods for linear programming. SIAM J Optim 12(3):782–810MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alexander Engau
    • 1
  • Miguel F. Anjos
    • 1
  • Anthony Vannelli
    • 2
  1. 1.University of WaterlooWaterlooCanada
  2. 2.University of GuelphGuelphCanada

Personalised recommendations